1 dataset found
  1. Land Cover Classification (Aerial Imagery)

    • ai-climate-hackathon-global-community.hub.arcgis.com
    • angola.africageoportal.com
    • +2more
    Updated Sep 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/content/c1bca075efb145d9a26394b866cd05eb
    Explore at:
    Dataset updated
    Sep 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/content/c1bca075efb145d9a26394b866cd05eb
Organization logo

Land Cover Classification (Aerial Imagery)

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 19, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

Search
Clear search
Close search
Google apps
Main menu