Estimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
In 2023, there were about 5.81 million males and 5.56 million females between the ages of 25 and 44 living in Canada, which was the most out of any age group. The next largest age group was between the ages of 45 and 64, with 5.01 million males and 5.11 million females.
Canadian demographics
The average age of the Canadian resident population was about 40.6 years in 2023, with Newfoundland and Labrador having the oldest average population, and Nunavut having the youngest average population. Additionally, the majority of Canadians in 2022, both males and females, are single. The next largest group of Canadians are married, and not separated.
Immigration to Canada
Much like the United States, Canada is an immigrant nation, and many of its residents have immigrant backgrounds. Additionally, immigration to Canada has been steadily increasing since 2000, making the country a diverse melting pot for people of all backgrounds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Little Canada by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Little Canada. The dataset can be utilized to understand the population distribution of Little Canada by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Little Canada. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Little Canada.
Key observations
Largest age group (population): Male # 15-19 years (515) | Female # 60-64 years (543). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Canada Population by Gender. You can refer the same here
In 2023, ***** percent of the adult population in the United States and ***** percent in Canada were owning and running an established business. Established business ownership rate refers to the percentage of 18-64 population who are currently owner-manager of an established business, i.e., owning and managing a running business that has paid salaries, wages, or any other payments to the owners for more than 42 months.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the New Canada, Maine population pyramid, which represents the New Canada town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Canada town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Little Canada, MN population pyramid, which represents the Little Canada population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Canada Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This scatter chart displays GDP (current US$) against male population (people) in Canada. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This scatter chart displays female population (people) against GDP (current US$) in Canada. The data is filtered where the date is 2021. The data is about countries per year.
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
In general, in most regions of Canada there are more females than males and this trend is particularly evident in areas with higher proportions of the population who are elderly. The preponderance of females in the older age groups is due to their higher life expectancy compared to males. In 2006, Saskatchewan had the highest proportion (17.1%) of the female population that was 65 years and over, while Alberta (11.9%), and the three territories (7.2% for Yukon, 4.9% for the Northwest Territories, and 2.6% for Nunavut) had the lowest proportions. The map shows the sex composition by age of the population by census division.
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
description: Singing-ground Survey data indicated that the numbers of displaying American woodcock (Scolopax minor) in the Eastern and Central Regions in 2005 were unchanged from 2004. There was not a significant trend in woodcock heard on the Singing-ground Survey in either the Eastern or Central Region during 1995-05. This represents the second consecutive year since 1992 that the 10-year trend estimate for either region was not a significant decline. There were long-term (1968-05) declines of2.0% per year in the Eastern Region and 1.8% per year in the Central Region. The 2004 recruitment index for the U.S. portion of the Eastern Region (2.0 immatures per adult female) was 34% higher than the 2003 index (1.5 immatures per adult female), and 19% higher than the long-term regional average. The 2004 recruitment index for the U.S. portion of the Central Region (1.3 immatures per adult female) was slightly lower than the 2003 index (1.4 immatures per adult female), and 17% below the long-term regional average. The preliminary 2004 recruitment index for eastern Canada was 2.8 immatures per adult female. The Harvest Information Program indicated that U.S. woodcock hunters in the Eastern Region spent 135,400 days afield and harvested 61,500 birds during the 2004-05 season. In the Central Region, U.S. hunters spent 366,100 days afield and harvested 234,800 woodcock. In Canada, 4,808 successful woodcock hunters harvested 33,493 birds during the 2004-05 season.; abstract: Singing-ground Survey data indicated that the numbers of displaying American woodcock (Scolopax minor) in the Eastern and Central Regions in 2005 were unchanged from 2004. There was not a significant trend in woodcock heard on the Singing-ground Survey in either the Eastern or Central Region during 1995-05. This represents the second consecutive year since 1992 that the 10-year trend estimate for either region was not a significant decline. There were long-term (1968-05) declines of2.0% per year in the Eastern Region and 1.8% per year in the Central Region. The 2004 recruitment index for the U.S. portion of the Eastern Region (2.0 immatures per adult female) was 34% higher than the 2003 index (1.5 immatures per adult female), and 19% higher than the long-term regional average. The 2004 recruitment index for the U.S. portion of the Central Region (1.3 immatures per adult female) was slightly lower than the 2003 index (1.4 immatures per adult female), and 17% below the long-term regional average. The preliminary 2004 recruitment index for eastern Canada was 2.8 immatures per adult female. The Harvest Information Program indicated that U.S. woodcock hunters in the Eastern Region spent 135,400 days afield and harvested 61,500 birds during the 2004-05 season. In the Central Region, U.S. hunters spent 366,100 days afield and harvested 234,800 woodcock. In Canada, 4,808 successful woodcock hunters harvested 33,493 birds during the 2004-05 season.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Identifying the specific environmental features and associated density-dependent processes that limit population growth is central to both ecology and conservation. Comparative assessments of sympatric species allow for inference into how ecologically similar species differentially respond to their shared environment, which can be used to inform community-level conservation strategies. Comparative assessments can nevertheless be complicated by interactions and feedback loops among the species in question. We developed an integrated population model based on sixty-one years of ecological data describing the demographic histories of Canvasbacks (Aythya valisineria) and Redheads (Aythya americana), two species of migratory diving ducks that utilize similar breeding habitats and affect each other’s demography through interspecific nest parasitism. We combined this model with a transient life table response experiment to determine the extent that demographic rates, and their contributions to population growth, were similar between these two species. We found that demographic rates and, to a lesser extent, their contributions to population growth covaried between Canvasbacks and Redheads, but the trajectories of population abundances widely diverged between the two species during the end of the 20th century due to inherent differences between the species life-histories and sensitivities to both environmental variation and harvest pressure. We found that annual survival of both species increased during years of restrictive harvest regulations; however, recent harvest pressure on female Canvasbacks may be contributing to population declines. Despite periodic, and often dramatic, increases in breeding abundance during wet years, the number of breeding Canvasbacks declined by 13% whereas the number of breeding Redheads has increased by 37% since 1961. Reductions in harvest pressure and improvements in submerged aquatic vegetation throughout the wintering grounds have mediated the extent to which populations of both species contracted during dry years in the Prairie Pothole Region. However, continued degradation of breeding habitats through climate-related shifts in wetland hydrology and agricultural conversion of surrounding grassland habitats may have exceeded the capacity for demographic compensation during the non-breeding season. Methods DATA COLLECTION We combined a series of long-term data sets into a single integrated population model that provided insights into how variation in seasonal survival (band releases and recoveries) and offspring production (harvest age-ratios) contributed to fluctuations in population growth (breeding survey, harvest estimates) for Canvasbacks and Redheads from 1961–2021. Banding Data – Information regarding the banding and subsequent harvest of ducks was acquired from the GameBirds Database CD (Bird Banding Lab, USGS Patuxent Wildlife Research Center, Laurel MD, USA, version August 2022). Male and female Canvasbacks and Redheads were captured following breeding but prior to the hunting season (Pre-Hunting) as ducklings (Local) or hatch year (HY; fledged juvenile) individuals as well as after hatch year (AHY; adult) individuals or following the hunting season (Post-Hunting) as an undifferentiated mixture of second year (SY) and after second year (ASY) individuals captured and released across North America from 1961–2022. We limited the pre-harvest banding data for both species to include all individuals banded and released alive in areas within the Canadian provinces of Alberta, Manitoba, Saskatchewan, as well as the states of Minnesota, Montana, North Dakota, and South Dakota within the USA (Fig. 1). For the pre-hunting banding group, we retained individuals captured between 1961–2021 during the late summer (Jul 15th – Sep 15th) with a known sex (M or F) and age-class (local, HY or AHY) that were released without any additional markers considered to meaningfully affect survival of an individual (e.g., nasal saddles or dual banding were permissible but telemetered individuals were excluded; Lameris & Kleyheeg, 2017). For post-hunting banding, we limited the spatial boundary of banding efforts to only consider individuals released from the Atlantic, Central, or Mississippi Flyways (Fig. 1). We followed the same data selection procedures, but limited releases to occur between Jan. 1st – March 15th from 1962–2022. Because too few banders differentiated SY from ASY at time of banding, we treated all post-hunting samples as AHY adults. Individuals banded during this period that were reported to be harvested during the winter they were originally banded were censored from the analysis, as the underlying model assumption was that this cohort of individuals had already survived the current hunting season. For both seasonal banding efforts, we only included recoveries of hunter-shot individuals harvested between September and February in which a known year-of-death could be ascertained. In addition to self-reported recoveries (i.e., reported by the hunter), we included hunter-harvested individuals that were instead reported by federal, state, or provincial entities (e.g., outcomes of hunter check stations or other forms of solicitation). We limited the dataset to only include recoveries of hunter-harvested individuals killed within 15 years of initial banding, which represented > 99% of pre-hunting and post-hunting recoveries. This cut-off was arbitrarily selected but did not meaningfully bias parameter estimation while vastly improving computational efficiency by bypassing the estimation of hundreds of zero-equivalent cell probabilities (personal communication S. Bonner). Harvest Intensity – We used the average number of Canvasbacks or Redheads allowed to be harvested per day (i.e., bag limit; (Appendix S1: Tables S1a-b) across the U.S. portions of the Atlantic, Mississippi, Central, and Pacific flyways during each year of the study as an index of harvest regulatory pressure. Annual harvest restrictions were acquired from the published literature (Péron et al., 2012), the annual release of the Late-Season Migratory Bird Hunting Regulations (e.g., USFWS 2022), and direct requests to the U.S. Fish and Wildlife Service. For these species, liberal harvest regulations were bag limits of two (Canvasbacks) and two to four (Redheads) allowable harvest per day, whereas conservative harvest regulations were either a bag limit of one individual per day or total closure. Harvest Composition – Data describing the age and sex structure of the harvested Canvasback and Redhead populations were derived from the annual Parts Collection surveys conducted by the U.S. Fish and Wildlife Service (USFWS) where a subset of hunters submit a wing from every duck they harvested (Pearse et al. 2014). These data were acquired through a direct request to the U.S. Fish and Wildlife Service. Additionally, estimates of the total number of Canvasbacks and Redheads harvested in the United States and Canada were derived from the Harvest Information Program (Steeg et al., 2002) and Canadian National Harvest Survey (Smith et al., 2022), respectively. Breeding Duck and Pond Densities – The relative number of breeding Canvasbacks and Redheads, as well as the relative amount of their breeding habitat (i.e., flooded ponds) within the Prairies were calculated using count data from the USFWS Waterfowl Breeding Population and Habitat Survey (hereafter BPOP; Smith, 1995), which has conducted an annual survey of breeding waterfowl and their habitats throughout the core part of these species’ breeding ranges (i.e., central Canada and the north-central United States) during the spring from 1961 through 2022 (U.S. Fish and Wildlife Service, 2022). However, BPOP surveys did not occur during 2020 and 2021. For the purposes of this study, we limited the spatial extent of BPOP survey to only include transects flown within Alberta, Manitoba, Saskatchewan, Montana, North Dakota, and South Dakota. Agriculture Development – The amounts of active cropland in the Prairies during each year of the study were estimated from Canada and United States Agriculture Census data (see Buderman et al., 2020). Annual estimates of active cropland acreages were summarized to represent an index of agricultural development during 1961–2021. Although agricultural development is predicted to have greater impact on upland-nesting dabbling ducks (Duncan and Devries 2018), it also impacts the wetland habitats in which Canvasbacks and Redheads forage and nest, as well as the predator communities that can access overwater nesting pochards (Sargeant et al. 1993, Bartzen et al. 2010). Winter Habitat – Winter habitat conditions were assumed to be related to submerged aquatic vegetation (SAV) within the Chesapeake for Canvasbacks and environmental salinity (TDS; total dissolved solids) in the Laguna Madre for Redheads. Although Redheads likely respond to variation in SAV, time series data describing SAV were not available for the Laguna Madre. Therefore, we assumed that annual fluctuations in salinity were an informative proxy of both SAV conditions and osmotic constraints (Quammen and Onuf 1993, Moore 2009), which in turn was representative of winter habitat conditions that simultaneously influenced Redhead food availability and harvest risk (Ballard et al. 2021).. Climate Data – We used the average Pacific/North American (PNA; Leathers et al., 1991) teleconnection pattern from April–July as an index of drought severity or environmental stress during the breeding season throughout the Prairies, and average sea-surface temperatures (SST) from September–March in the Chesapeake and Laguna Madre as an index of winter severity for Canvasbacks and Redheads, respectively (see Data Availability statement).
This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.
Life expectancy in North America
Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).
Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.
Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).
Adult female blue-winged teal (n = 112,639) were captured in traps and nets prior to the hunting season (July-September) in the prairie potholes and aspen parklands of the North American midcontinent from 1973 to 2016 (Figure 1). Teal were ringed with uniquely engraved metal markers, and some marked individuals were killed by hunters. A portion of these markers were retrieved and reported to the USGS Bird Banding Lab (n = 2,518; USGS Patuxent Wildlife Research Center). From 1974-2016, waterfowl breeding population and habitat surveys were flown at the beginning of the breeding season over the same area by the U.S. Fish and Wildlife Service and the Canadian Wildlife Service to estimate the total number of breeding pairs of teal (y_n,t) and other ducks, and the number of ponds (y_p,t), a landscape scale measure of habitat suitability for breeding waterfowl (Walker et al. 2013, U.S. Fish & Wildlife Service 2018). We downloaded the ringing and recovery data from the GameBirds Database CD (Bird Banding Lab, USGS Patuxent Wildlife Research Center), and the Waterfowl Breeding Population and Habitat Survey data from the USFWS Migratory Birds Data Center. We retained females marked in Canada and the United States in Waterfowl Breeding Population and Habitat Survey strata 20-49 (U.S. Fish & Wildlife Service 2018), and we restricted re-encounters to harvested individuals recovered and reported by hunters in the United States and Canada from September through early February, with half of all reported hunting mortality occurring in September. We excluded recoveries in Mexico, Central and South America, and the Carribean (n = 316) due to the inclusion of band reporting probabilities (r = r_1973, ... , r_2016) in our analyses, which were not available for Latin America. Mark-recovery data were downloaded from the USGS Bird Banding Lab Celis-Murillo et al. 2020. We accessed estimates of teal abundance and pond abundance from the Waterfowl Breeding Population and Habitat Survey (U.S. Fish & Wildlife Service 2018), as well as data on federal duck stamp sales, which are required to hunt for waterfowl in the United States. Third party data were used for this study, collection of which followed appropriate ethical guidelines. No additional ethical approval was required from our respective insitutions. We formatted the capture-recovery data into a multinomial array to reduce computational requirements. Please contact the authors for additional information about data processing. 1. Harvest of wild organisms is an important component of human culture, economy, and recreation, but can also put species at risk of extinction. Decisions that guide successful management actions therefore rely on the ability of researchers to link changes in demographic processes to the anthropogenic actions or environmental changes that underlie variation in demographic parameters. 2. Ecologists often use population models or maximum sustained yield curves to estimate the impacts of harvest on wildlife and fish populations. Applications of these models usually focus exclusively on the impact of harvest and often fail to consider adequately other potential, often collinear, mechanistic drivers of the observed relationships between harvest and demographic rates. In this study, we used an integrated population model and long-term data (1973-2016) to examine the relationships among hunting and natural mortality, the number of hunters, habitat conditions, and population size of blue-winged teal (Spatula discors), an abundant North American dabbling duck with a relatively fast-paced life history strategy. 3. Over the last two and a half decades of the study, teal abundance tripled, hunting mortality probability increased slightly (< 0.02), and natural mortality probability increased substantially (> 0.1) at greater population densities. We demonstrate strong density-dependent effects on natural mortality and fecundity as population density increased, indicative of compensatory harvest mortality and compensatory natality. Critically, an analysis that only assessed the relationship between survival and hunting mortality would spuriously indicate depensatory hunting mortality due to multicollinearity between abundance, natural mortality, and hunting mortality. 4. Our findings demonstrate that models that only consider the direct effect of hunting on survival or natural mortality can fail to accurately assess the mechanistic impact of hunting on population dynamics due to multicollinearity among demographic drivers. This multicollinearity limits inference and may have strong impacts on applied management actions globally. The open-source programs R and JAGS are required to run the integrated population model described in this manuscript.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of New Canada town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for New Canada town. The dataset can be utilized to understand the population distribution of New Canada town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in New Canada town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for New Canada town.
Key observations
Largest age group (population): Male # 10-14 years (45) | Female # 10-14 years (56). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Canada town Population by Gender. You can refer the same here
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
90% of people aged 18-29 use social media in some form. 15% of people aged 23-38 admit that they are addicted to social media.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Canada town population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of New Canada town. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 188 (43.62% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Canada town Population by Age. You can refer the same here
One fifth of the adult population in Canada was either involved in starting or running a new business in 2023. 15 percent of Americans did the same.
Estimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.