Facebook
Twitter
According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.
One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.
Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.
The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.
From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.
The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The technological development in the new economic era has brought challenges to enterprises. Enterprises need to use massive and effective consumption information to provide customers with high-quality customized services. Big data technology has strong mining ability. The relevant theories of computer data mining technology are summarized to optimize the marketing strategy of enterprises. The application of data mining in precision marketing services is analyzed. Extreme Gradient Boosting (XGBoost) has shown strong advantages in machine learning algorithms. In order to help enterprises to analyze customer data quickly and accurately, the characteristics of XGBoost feedback are used to reverse the main factors that can affect customer activation cards, and effective analysis is carried out for these factors. The data obtained from the analysis points out the direction of effective marketing for potential customers to be activated. Finally, the performance of XGBoost is compared with the other three methods. The characteristics that affect the top 7 prediction results are tested for differences. The results show that: (1) the accuracy and recall rate of the proposed model are higher than other algorithms, and the performance is the best. (2) The significance p values of the features included in the test are all less than 0.001. The data shows that there is a very significant difference between the proposed features and the results of activation or not. The contributions of this paper are mainly reflected in two aspects. 1. Four precision marketing strategies based on big data mining are designed to provide scientific support for enterprise decision-making. 2. The improvement of the connection rate and stickiness between enterprises and customers has played a huge driving role in overall customer marketing.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Mining Tools Market size was valued at USD 915.42 Million in 2024 and is projected to reach USD 2171.21 Million by 2032, growing at a CAGR of 11.40% from 2026 to 2032.• Big Data Explosion: Exponential growth in data generation from IoT devices, social media, mobile applications, and digital transactions is creating massive datasets requiring advanced mining tools for analysis. Organizations need sophisticated solutions to extract meaningful insights from structured and unstructured data sources for competitive advantage.• Digital Transformation Initiatives: Accelerating digital transformation across industries is driving demand for data mining tools that enable data-driven decision making and business intelligence. Companies are investing in analytics capabilities to optimize operations, improve customer experiences, and develop new revenue streams through data monetization strategies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The technological development in the new economic era has brought challenges to enterprises. Enterprises need to use massive and effective consumption information to provide customers with high-quality customized services. Big data technology has strong mining ability. The relevant theories of computer data mining technology are summarized to optimize the marketing strategy of enterprises. The application of data mining in precision marketing services is analyzed. Extreme Gradient Boosting (XGBoost) has shown strong advantages in machine learning algorithms. In order to help enterprises to analyze customer data quickly and accurately, the characteristics of XGBoost feedback are used to reverse the main factors that can affect customer activation cards, and effective analysis is carried out for these factors. The data obtained from the analysis points out the direction of effective marketing for potential customers to be activated. Finally, the performance of XGBoost is compared with the other three methods. The characteristics that affect the top 7 prediction results are tested for differences. The results show that: (1) the accuracy and recall rate of the proposed model are higher than other algorithms, and the performance is the best. (2) The significance p values of the features included in the test are all less than 0.001. The data shows that there is a very significant difference between the proposed features and the results of activation or not. The contributions of this paper are mainly reflected in two aspects. 1. Four precision marketing strategies based on big data mining are designed to provide scientific support for enterprise decision-making. 2. The improvement of the connection rate and stickiness between enterprises and customers has played a huge driving role in overall customer marketing.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Data Mining Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.
North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS
Increasing Focus on Customer Satisfaction to Drive Data Mining Software Market Growth
In today’s hyper-competitive and digitally connected marketplace, customer satisfaction has emerged as a critical factor for business sustainability and growth. The growing focus on enhancing customer satisfaction is proving to be a significant driver in the expansion of the data mining software market. Organizations are increasingly leveraging data mining tools to sift through vast volumes of customer data—ranging from transactional records and website activity to social media engagement and call center logs—to uncover insights that directly influence customer experience strategies. Data mining software empowers companies to analyze customer behavior patterns, identify dissatisfaction triggers, and predict future preferences. Through techniques such as classification, clustering, and association rule mining, businesses can break down large datasets to understand what customers want, what they are likely to purchase next, and how they feel about the brand. These insights not only help in refining customer service but also in shaping product development, pricing strategies, and promotional campaigns. For instance, Netflix uses data mining to recommend personalized content by analyzing a user's viewing history, ratings, and preferences. This has led to increased user engagement and retention, highlighting how a deep understanding of customer preferences—made possible through data mining—can translate into competitive advantage. Moreover, companies are increasingly using these tools to create highly targeted and customer-specific marketing campaigns. By mining data from e-commerce transactions, browsing behavior, and demographic profiles, brands can tailor their offerings and communications to suit individual customer segments. For Instance Amazon continuously mines customer purchasing and browsing data to deliver personalized product recommendations, tailored promotions, and timely follow-ups. This not only enhances customer satisfaction but also significantly boosts conversion rates and average order value. According to a report by McKinsey, personalization can deliver five to eight times the ROI on marketing spend and lift sales by 10% or more—a powerful incentive for companies to adopt data mining software as part of their customer experience toolkit. (Source: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/personalizing-at-scale#/) The utility of data mining tools extends beyond e-commerce and streaming platforms. In the banking and financial services industry, for example, institutions use data mining to analyze customer feedback, call center transcripts, and usage data to detect pain points and improve service delivery. Bank of America, for instance, utilizes data mining and predictive analytics to monitor customer interactions and provide proactive service suggestions or fraud alerts, significantly improving user satisfaction and trust. (Source: https://futuredigitalfinance.wbresearch.com/blog/bank-of-americas-erica-client-interactions-future-ai-in-banking) Similarly, telecom companies like Vodafone use data mining to understand customer churn behavior and implement retention strategies based on insights drawn from service usage patterns and complaint histories. In addition to p...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In response to NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management", Michigan Aerospace Corporation (MAC) asserts that our unique SPADE (Sparse Processing Applied to Data Exploitation) technology meets a significant fraction of the stated criteria and has functionality that enables it to handle many applications within the aircraft lifecycle. SPADE distills input data into highly quantized features and uses MAC's novel techniques for constructing Ensembles of Decision Trees to develop extremely accurate diagnostic/prognostic models for classification, regression, clustering, anomaly detection and semi-supervised learning tasks. These techniques are currently being employed to do Threat Assessment for satellites in conjunction with researchers at the Air Force Research Lab. Significant advantages to this approach include: 1) completely data driven; 2) training and evaluation are faster than conventional methods; 3) operates effectively on huge datasets (> billion samples X > million features), 4) proven to be as accurate as state-of-the-art techniques in many significant real-world applications. The specific goals for Phase 1 will be to work with domain experts at NASA and with our partners Boeing, SpaceX and GMV Space Systems to delineate a subset of problems that are particularly well-suited to this approach and to determine requirements for deploying algorithms on platforms of opportunity.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The technological development in the new economic era has brought challenges to enterprises. Enterprises need to use massive and effective consumption information to provide customers with high-quality customized services. Big data technology has strong mining ability. The relevant theories of computer data mining technology are summarized to optimize the marketing strategy of enterprises. The application of data mining in precision marketing services is analyzed. Extreme Gradient Boosting (XGBoost) has shown strong advantages in machine learning algorithms. In order to help enterprises to analyze customer data quickly and accurately, the characteristics of XGBoost feedback are used to reverse the main factors that can affect customer activation cards, and effective analysis is carried out for these factors. The data obtained from the analysis points out the direction of effective marketing for potential customers to be activated. Finally, the performance of XGBoost is compared with the other three methods. The characteristics that affect the top 7 prediction results are tested for differences. The results show that: (1) the accuracy and recall rate of the proposed model are higher than other algorithms, and the performance is the best. (2) The significance p values of the features included in the test are all less than 0.001. The data shows that there is a very significant difference between the proposed features and the results of activation or not. The contributions of this paper are mainly reflected in two aspects. 1. Four precision marketing strategies based on big data mining are designed to provide scientific support for enterprise decision-making. 2. The improvement of the connection rate and stickiness between enterprises and customers has played a huge driving role in overall customer marketing.
Facebook
TwitterObjectiveOver the past decades, many studies have used data mining technology to predict the 5-year survival rate of colorectal cancer, but there have been few reports that compared multiple data mining algorithms to the TNM classification of malignant tumors (TNM) staging system using a dataset in which the training and testing data were from different sources. Here we compared nine data mining algorithms to the TNM staging system for colorectal survival analysis. MethodsTwo different datasets were used: 1) the National Cancer Institute's Surveillance, Epidemiology, and End Results dataset; and 2) the dataset from a single Chinese institution. An optimization and prediction system based on nine data mining algorithms as well as two variable selection methods was implemented. The TNM staging system was based on the 7th edition of the American Joint Committee on Cancer TNM staging system. ResultsWhen the training and testing data were from the same sources, all algorithms had slight advantages over the TNM staging system in predictive accuracy. When the data were from different sources, only four algorithms (logistic regression, general regression neural network, Bayesian networks, and Naïve Bayes) had slight advantages over the TNM staging system. Also, there was no significant differences among all the algorithms (p>0.05). ConclusionsThe TNM staging system is simple and practical at present, and data mining methods are not accurate enough to replace the TNM staging system for colorectal cancer survival prediction. Furthermore, there were no significant differences in the predictive accuracy of all the algorithms when the data were from different sources. Building a larger dataset that includes more variables may be important for furthering predictive accuracy.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Qualitative data gathered from interviews that were conducted with case organisations. The data is analysed using a qualitative data analysis tool (AtlasTi) to code and generate network diagrams. Software such as Atlas.ti 8 Windows will be a great advantage to use in order to view these results. Interviews were conducted with four case organisations. The details of the responses from the respondents from case organisations are captured. The data gathered during the interview sessions is captured in a tabular form and graphs were also created to identify trends. Also in this study is desktop review of the case organisations that formed part of the study. The desktop study was done using published annual reports over a period of more than seven years. The analysis was done given the scope of the project and its constructs.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Enterprise Data Warehouse (EDW) market is experiencing robust growth, projected to reach $14.40 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 30.08% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing volume and variety of data generated by businesses necessitate robust solutions for storage, processing, and analysis. Cloud-based deployments are gaining significant traction, offering scalability, cost-effectiveness, and accessibility. Furthermore, the growing adoption of advanced analytics techniques like machine learning and AI is driving demand for sophisticated EDW solutions capable of handling complex data sets and delivering actionable insights. The market is segmented by product type (information and analytical processing, data mining) and deployment (cloud-based, on-premises). While on-premises solutions still hold a market share, the cloud segment is witnessing significantly faster growth due to its inherent advantages. Key players like Snowflake, Amazon, and Microsoft are leading the charge, leveraging their existing cloud infrastructure and expertise in data management to capture market share. Competitive strategies focus on innovation in areas like data virtualization, enhanced security features, and integration with other enterprise applications. Industry risks include data security breaches, the complexity of data integration, and the need for skilled professionals to manage and utilize EDW systems effectively. The North American market currently dominates, followed by Europe and APAC regions, each showing strong growth potential. The forecast period (2025-2033) anticipates continued market expansion driven by ongoing digital transformation initiatives across various industries. The increasing adoption of big data analytics and the growing need for real-time business intelligence will further fuel market growth. Companies are investing heavily in upgrading their EDW infrastructure and adopting advanced analytical capabilities to gain a competitive edge. The competitive landscape is dynamic, with both established players and emerging startups vying for market share. Strategic partnerships, mergers, and acquisitions are expected to reshape the market landscape over the forecast period. The continued development of innovative solutions addressing the evolving needs of businesses will be crucial for success in this rapidly growing market. Regions like APAC show immense growth potential due to increasing digitization and data generation across emerging economies.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 10.05(USD Billion) |
| MARKET SIZE 2025 | 11.1(USD Billion) |
| MARKET SIZE 2035 | 30.2(USD Billion) |
| SEGMENTS COVERED | Deployment Model, Application, Technology, End Use, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | data explosion, real-time processing, competitive advantage, cloud adoption, advanced analytics tools |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Tableau, Qlik, Micro Focus, Asian Analytics, SAP, Google Cloud, Teradata, Dell Technologies, Microsoft, Hewlett Packard Enterprise, SAS, Cloudera, Alteryx, IBM, AWS, Oracle |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | AI-driven predictive analytics solutions, Cloud-based analytics platform integration, Real-time data processing capabilities, Advanced visualization tools for insights, Industry-specific analytics applications |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 10.5% (2025 - 2035) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this repository, we release a series of vector space models of Ancient Greek, trained following different architectures and with different hyperparameter values.
Below is a breakdown of all the models released, with an indication of the training method and hyperparameters. The models are split into ‘Diachronica’ and ‘ALP’ models, according to the published paper they are associated with.
[Diachronica:] Stopponi, Silvia, Nilo Pedrazzini, Saskia Peels-Matthey, Barbara McGillivray & Malvina Nissim. Forthcoming. Natural Language Processing for Ancient Greek: Design, Advantages, and Challenges of Language Models, Diachronica.
[ALP:] Stopponi, Silvia, Nilo Pedrazzini, Saskia Peels-Matthey, Barbara McGillivray & Malvina Nissim. 2023. Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work. Proceedings of the Ancient Language Processing Workshop associated with the 14th International Conference on Recent Advances in Natural Language Processing (RANLP 2023). 49-58. Association for Computational Linguistics (ACL). https://doi.org/10.26615/978-954-452-087-8.2023_006
Diachronica models
Training data
Diorisis corpus (Vatri & McGillivray 2018). Separate models were trained for:
Classical subcorpus
Hellenistic subcorpus
Whole corpus
Models are named according to the (sub)corpus they are trained on (i.e. hel_ or hellenestic is appended to the name of the models trained on the Hellenestic subcorpus, clas_ or classical for the Classical subcorpus, full_ for the whole corpus).
Models
Count-based
Software used: LSCDetection (Kaiser et al. 2021; https://github.com/Garrafao/LSCDetection)
a. With Positive Pointwise Mutual Information applied (folder PPMI spaces). For each model, a version trained on each subcorpus after removing stopwords is also included (_stopfilt is appended to the model names). Hyperparameter values: window=5, k=1, alpha=0.75.
b. With both Positive Pointwise Mutual Information and dimensionality reduction with Singular Value Decomposition applied (folder PPMI+SVD spaces). For each model, a version trained on each subcorpus after removing stopwords is also included (_stopfilt is appended to the model names). Hyperparameter values: window=5, dimensions=300, gamma=0.0.
Word2Vec
Software used: CADE (Bianchi et al. 2020; https://github.com/vinid/cade).
a. Continuous-bag-of-words (CBOW). Hyperparameter values: size=30, siter=5, diter=5, workers=4, sg=0, ns=20.
b. Skipgram with Negative Sampling (SGNS). Hyperparameter values: size=30, siter=5, diter=5, workers=4, sg=1, ns=20.
Syntactic word embeddings
Syntactic word embeddings were also trained on the Ancient Greek subcorpus of the PROIEL treebank (Haug & Jøhndal 2008), the Gorman treebank (Gorman 2020), the PapyGreek treebank (Vierros & Henriksson 2021), the Pedalion treebank (Keersmaekers et al. 2019), and the Ancient Greek Dependency Treebank (Bamman & Crane 2011) largely following the SuperGraph method described in Al-Ghezi & Kurimo (2020) and the Node2Vec architecture (Grover & Leskovec 2016) (see https://github.com/npedrazzini/ancientgreek-syntactic-embeddings for more details). Hyperparameter values: window=1, min_count=1.
ALP models
Training data
Archaic, Classical, and Hellenistic portions of the Diorisis corpus (Vatri & McGillivray 2018) merged, stopwords removed according to the list made by Alessandro Vatri, available at https://figshare.com/articles/dataset/Ancient_Greek_stop_words/9724613.
Models
Count-based
Software used: LSCDetection (Kaiser et al. 2021; https://github.com/Garrafao/LSCDetection)
a. With Positive Pointwise Mutual Information applied (folder ppmi_alp). Hyperparameter values: window=5, k=1, alpha=0.75. Stopwords were removed from the training set.
b. With both Positive Pointwise Mutual Information and dimensionality reduction with Singular Value Decomposition applied (folder ppmi_svd_alp). Hyperparameter values: window=5, dimensions=300, gamma=0.0. Stopwords were removed from the training set.
Word2Vec
Software used: Gensim library (Řehůřek and Sojka, 2010)
a. Continuous-bag-of-words (CBOW). Hyperparameter values: size=30, window=5, min_count=5, negative=20, sg=0. Stopwords were removed from the training set.
b. Skipgram with Negative Sampling (SGNS). Hyperparameter values: size=30, window=5, min_count=5, negative=20, sg=1. Stopwords were removed from the training set.
References
Al-Ghezi, Ragheb & Mikko Kurimo. 2020. Graph-based syntactic word embeddings. In Ustalov, Dmitry, Swapna Somasundaran, Alexander Panchenko, Fragkiskos D. Malliaros, Ioana Hulpuș, Peter Jansen & Abhik Jana (eds.), Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs), 72-78.
Bamman, D. & Gregory Crane. 2011. The Ancient Greek and Latin dependency treebanks. In Sporleder, Caroline, Antal van den Bosch & Kalliopi Zervanou (eds.), Language Technology for Cultural Heritage. Selected Papers from the LaTeCH [Language Technology for Cultural Heritage] Workshop Series. Theory and Applications of Natural Language Processing, 79-98. Berlin, Heidelberg: Springer.
Gorman, Vanessa B. 2020. Dependency treebanks of Ancient Greek prose. Journal of Open Humanities Data 6(1).
Grover, Aditya & Jure Leskovec. 2016. Node2vec: scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16), 855-864.
Haug, Dag T. T. & Marius L. Jøhndal. 2008. Creating a parallel treebank of the Old Indo-European Bible translations. In Proceedings of the Second Workshop on Language Technology for Cultural Heritage Data (LaTeCH), 27–34.
Keersmaekers, Alek, Wouter Mercelis, Colin Swaelens & Toon Van Hal. 2019. Creating, enriching and valorizing treebanks of Ancient Greek. In Candito, Marie, Kilian Evang, Stephan Oepen & Djamé Seddah (eds.), Proceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019), 109-117.
Kaiser, Jens, Sinan Kurtyigit, Serge Kotchourko & Dominik Schlechtweg. 2021. Effects of Pre- and Post-Processing on type-based Embeddings in Lexical Semantic Change Detection. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics.
Schlechtweg, Dominik, Anna Hätty, Marco del Tredici & Sabine Schulte im Walde. 2019. A Wind of Change: Detecting and Evaluating Lexical Semantic Change across Times and Domains. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 732-746, Florence, Italy. ACL.
Vatri, Alessandro & Barbara McGillivray. 2018. The Diorisis Ancient Greek Corpus: Linguistics and Literature. Research Data Journal for the Humanities and Social Sciences 3, 1, 55-65, Available From: Brill https://doi.org/10.1163/24523666-01000013
Vierros, Marja & Erik Henriksson. 2021. PapyGreek treebanks: a dataset of linguistically annotated Greek documentary papyri. Journal of Open Humanities Data 7.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Warehousing Market Size 2025-2029
The data warehousing market size is forecast to increase by USD 32.3 billion, at a CAGR of 14% between 2024 and 2029.
The market is experiencing significant shifts as businesses increasingly adopt cloud-based solutions and advanced storage technologies reshape the competitive landscape. The transition from on-premises to Software-as-a-Service (SaaS) models offers businesses greater flexibility, scalability, and cost savings. Simultaneously, the emergence of advanced storage technologies, such as columnar databases and in-memory storage, enables faster data processing and analysis, enhancing business intelligence capabilities. However, the market faces challenges as well. Data privacy and security risks continue to pose a significant threat, with the increasing volume and complexity of data requiring robust security measures. Ensuring data confidentiality, integrity, and availability is crucial for businesses to maintain customer trust and comply with regulatory requirements. Companies must invest in advanced security solutions and adopt best practices to mitigate these risks effectively.
What will be the Size of the Data Warehousing Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, variety, and velocity of data. ETL processes play a crucial role in data integration, transforming data from various sources into a consistent format for analysis. On-premise data warehousing and cloud data warehousing solutions offer different advantages, with the former providing greater control and the latter offering flexibility and scalability. Data lakes and data warehouses complement each other, with data lakes serving as a source for raw data and data warehouses providing structured data for analysis. Data warehouse optimization is a continuous process, with data stewardship, data transformation, and data modeling essential for maintaining data quality and ensuring compliance.
Data mining and analytics extract valuable insights from data, while data visualization makes complex data understandable. Data security, encryption, and data governance frameworks are essential for protecting sensitive data. Data warehousing services and consulting offer expertise in implementing and optimizing data platforms. Data integration, masking, and federation enable seamless data access, while data audit and lineage ensure data accuracy and traceability. Data management solutions provide a comprehensive approach to managing data, from data cleansing to monetization. Data warehousing modernization and migration offer opportunities for improving performance and scalability. Business intelligence and data-driven decision making rely on the insights gained from data warehousing.
Hybrid data warehousing offers a flexible approach to data management, combining the benefits of on-premise and cloud solutions. Metadata management and data catalogs facilitate efficient data access and management.
How is this Data Warehousing Industry segmented?
The data warehousing industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesHybridCloud-basedTypeStructured and semi-structured dataUnstructured dataEnd-userBFSIHealthcareRetail and e-commerceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth KoreaRest of World (ROW).
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, on-premise data warehousing solutions continue to be a preferred choice for businesses seeking end-to-end control and enhanced security. These solutions, installed and managed on the user's server, offer benefits such as workflow streamlining, speed, and robust data governance. The high cost of implementation and upgradation, coupled with the need for IT specialists, are factors contributing to the segment's popularity. Data security is a primary concern, with the complete ownership and management of servers ensuring that business data remains secure. ETL processes play a crucial role in data warehousing, facilitating data transformation, integration, and loading. Data modeling and mining are essential components, enabling businesses to derive valuable insights from their data. Data stewardship ensures data compliance and accuracy, while optimization techniques enhance performance. Data lake, a large storage repository, offers a flexible and cost-effective approach to managing diverse data types. Data warehousing consulting services help businesses navigate the complexities of im
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global crime analytics tool market size was valued at approximately USD 5.4 billion in 2023 and is projected to reach around USD 12.1 billion by 2032, growing at a CAGR of 9.5% during the forecast period. The substantial growth in the crime analytics tool market can be attributed to the increasing adoption of advanced technologies by law enforcement agencies and the rising incidences of crime globally, which necessitates more sophisticated methods of crime prevention and analysis.
One of the main growth factors driving the crime analytics tool market is the rapid technological advancements in big data analytics and artificial intelligence (AI). These technologies are being increasingly integrated into crime analytics tools, providing law enforcement agencies with powerful capabilities to analyze vast amounts of data quickly and accurately. Additionally, the proliferation of smart city initiatives across the globe is further fueling the demand for these tools, as they play a crucial role in enhancing the security infrastructure of urban environments. The ability of crime analytics tools to predict and prevent criminal activities by analyzing patterns and trends is proving to be invaluable in maintaining public safety.
Another significant driver of market growth is the increasing collaboration between public and private sectors in enhancing security measures. With the rise in cybercrimes and terrorism, both government agencies and private security firms are investing heavily in advanced crime analytics solutions. This collaboration is not only improving the overall effectiveness of crime prevention strategies but also driving innovations within the market. Furthermore, the growing awareness among law enforcement agencies about the benefits of crime analytics tools, such as improved response times and resource allocation, is contributing to the market's expansion.
The integration of Internet of Things (IoT) devices and surveillance systems with crime analytics tools is also propelling the market forward. IoT devices generate massive amounts of data that can be analyzed to gain insights into potential threats and criminal activities. By incorporating data from various sources such as CCTV footage, social media, and other digital platforms, crime analytics tools can provide a comprehensive overview of the security landscape, aiding in more effective decision-making. This holistic approach to crime prevention is becoming increasingly essential in today's interconnected world.
Regionally, North America holds the largest market share due to the early adoption of advanced technologies and the presence of several key players in the region. The strong focus on homeland security and substantial investments in public safety infrastructure are also contributing factors. Europe follows closely, with significant growth driven by stringent regulations and increasing efforts to combat organized crime. The Asia Pacific region is expected to witness the highest CAGR during the forecast period, fueled by rapid urbanization, increasing crime rates, and significant government investments in smart city projects. Latin America and the Middle East & Africa are also expected to see notable growth, driven by improving economic conditions and heightened security concerns.
The crime analytics tool market is segmented into three primary components: software, hardware, and services. The software component dominates the market, driven by the increasing demand for advanced analytical solutions capable of processing large datasets and generating actionable insights. Crime analytics software includes various applications such as predictive analytics, data mining, and visualization tools that enable law enforcement agencies to identify crime patterns and trends effectively. The continuous advancements in AI and machine learning algorithms are further enhancing the capabilities of these software solutions, making them indispensable tools for modern crime prevention.
Hardware components, although smaller in market share compared to software, play a crucial role in the overall crime analytics ecosystem. This segment includes surveillance cameras, sensors, and other IoT devices that collect real-time data essential for comprehensive crime analysis. The integration of high-definition cameras, facial recognition systems, and biometric devices with crime analytics software is significantly improving the accuracy and efficiency of crime detection and prevention efforts. As the demand for robust security infrastructure continues to rise,
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Big Data Market In Oil And Gas Sector Size 2025-2029
The big data market in oil and gas sector size is forecast to increase by USD 31.13 billion, at a CAGR of 29.7% between 2024 and 2029.
In the Oil and Gas sector, the adoption of Big Data is increasingly becoming a strategic priority to optimize production processes and enhance operational efficiency. The implementation of advanced analytics tools and technologies is enabling companies to gain valuable insights from vast volumes of data, leading to improved decision-making and operational excellence. However, the use of Big Data in the Oil and Gas industry is not without challenges. Security concerns are at the forefront of the Big Data landscape in the Oil and Gas sector. With the vast amounts of sensitive data being generated and shared, ensuring data security is crucial. The use of blockchain solutions is gaining traction as a potential answer to this challenge, offering enhanced security and transparency. Yet, the implementation of these solutions presents its own set of complexities, requiring significant investment and expertise. Despite these challenges, the potential benefits of Big Data in the Oil and Gas sector are significant, offering opportunities for increased productivity, cost savings, and competitive advantage. Companies seeking to capitalize on these opportunities must navigate the security challenges effectively, investing in the right technologies and expertise to secure their data and reap the rewards of Big Data analytics.
What will be the Size of the Big Data Market In Oil And Gas Sector during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleIn the oil and gas sector, the application of big data continues to evolve, shaping market dynamics across various sectors. Predictive modeling and pipeline management are two areas where big data plays a pivotal role. Big data storage solutions ensure the secure handling of vast amounts of data, enabling data governance and natural gas processing. The integration of data from exploration and production, drilling optimization, and reservoir simulation enhances operational efficiency and cost optimization. Artificial intelligence, data mining, and automated workflows facilitate decision support systems and data visualization, enabling pattern recognition and risk management. Big data also optimizes upstream operations through real-time data processing, horizontal drilling, and hydraulic fracturing.
Downstream operations benefit from data analytics, asset management, process automation, and energy efficiency. Sensor networks and IoT devices facilitate environmental monitoring and carbon emissions tracking. Deep learning and machine learning algorithms optimize production and improve enhanced oil recovery. Digital twins and automated workflows streamline project management and supply chain operations. Edge computing and cloud computing enable data processing in real-time, ensuring data quality and security. Remote monitoring and health and safety applications enhance operational efficiency and ensure regulatory compliance. Big data's role in the oil and gas sector is ongoing and dynamic, continuously unfolding and shaping market patterns.
How is this Big Data In Oil And Gas Sector Industry segmented?
The big data in oil and gas sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ApplicationUpstreamMidstreamDownstreamTypeStructuredUnstructuredSemi-structuredDeploymentOn-premisesCloud-basedProduct TypeServicesSoftwareGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Application Insights
The upstream segment is estimated to witness significant growth during the forecast period.In the oil and gas industry's upstream sector, big data analytics significantly enhances exploration, drilling, and production activities. Big data storage and processing facilitate the analysis of extensive seismic data, well logs, geological information, and other relevant data. This information is crucial for identifying potential drilling sites, estimating reserves, and enhancing reservoir modeling. Real-time data processing from production operations allows for optimization, maximizing hydrocarbon recovery, and improving operational efficiency. Machine learning and artificial intelligence algorithms identify patterns and anomalies, providing valuable insights for drilling optimization, production forecasting, and risk management. Data integration and data governance ensure data quality and security, enabling effective decision-making through advanced decision support systems and data visual
Facebook
TwitterBecause of the sheer number of products available, the German book market is one of the largest business trading today. In order to display a highly individual profile to customers and, at the same time, keep the effort involved in selecting and ordering as low as possible, the key to success for the bookshop therefore lies in the effective purchasing from a choice of roughly 96,000 new titles each year. The challenge for the bookseller is to buy the right amount of the right books at the right time.
It is with this in mind that this year’s DATA MINING CUP Competition will be held in cooperation with Libri, Germany’s leading book wholesaler. Among Libri’s many successful support measures for booksellers, purchase recommendations give the bookshop a competitive advantage. Accordingly, the DATA MINING CUP 2009 challenge will be to forecast of purchase quantities of a clearly defined title portfolio per location, using simulated data.
The task of the DATA MINING CUP Competition 2009 is to forecast purchase quantities for 8 titles for 2,418 different locations. In order to create the model, simulated purchase data from an additional 2,394 locations will be supplied. All data refers to a fixed period of time. The object is to forecast the purchase quantities of these 8 different titles for the 2,418 locations as exactly as possible.
There are two text files available to assist in solving the problem: dmc2009_train.txt (train data file) and dmc2009_forecast.txt (data of 2,418 locations for whom a prediction is to be made).
This data is publicly available in the data-mining-website.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data supplements our publication "An unlikely pairing: the mining industry economically benefits from a global tax on carbon emissions". This data is used to test the impact of a hypothetical international carbon taxation regime on a subsection of the mining industry compared to other sectors. A financial model was developed to calculate the cost of carbon taxes for 23 commodities across three industries. The findings show that, given any level of taxation tested, most mining industry commodities would not add more than 30% of their present product value. Comparatively, commodities such as coal could be taxed at more than 150% of their current product value under more intense carbon pricing initiatives, thereby accelerating the transition to renewable energy sources and the consequent demand benefits for mined metals.
Facebook
TwitterJAMIO-2017-0039.R2This data file contains data of de-identified client_IDs, codes for Omaha System problem concepts, related strength-indicators, signs/symptoms, Knowledge, Behavior, and Status scores as well as a data dictionary for codes and terms.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the Data Analytics Market market was valued at USD 57.76 billion in 2023 and is projected to reach USD 302.74 billion by 2032, with an expected CAGR of 26.7 % during the forecast period. The data analytics market encompasses tools and technologies that analyze and interpret complex data sets to derive actionable insights. It involves techniques such as data mining, predictive analytics, and statistical analysis, enabling organizations to make informed decisions. Key uses include improving operational efficiency, enhancing customer experiences, and driving strategic planning across industries like healthcare, finance, and retail. Applications range from fraud detection and risk management to marketing optimization and supply chain management. Current trends highlight the growing adoption of artificial intelligence and machine learning for advanced analytics, the rise of real-time data processing, and an increasing focus on data privacy and security. As businesses seek to leverage data for competitive advantage, the demand for analytics solutions continues to grow.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Data Science Platform market is experiencing robust growth, projected to reach $10.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 23.50% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing volume and complexity of data generated across diverse industries necessitates sophisticated platforms for analysis and insights extraction. Businesses are increasingly adopting cloud-based solutions for their scalability, cost-effectiveness, and accessibility, driving the growth of the cloud deployment segment. Furthermore, the rising demand for advanced analytics capabilities across sectors like BFSI (Banking, Financial Services, and Insurance), retail and e-commerce, and IT & Telecom is significantly boosting market demand. The availability of robust and user-friendly platforms is empowering businesses of all sizes, from SMEs to large enterprises, to leverage data science effectively for improved decision-making and competitive advantage. The market is witnessing the emergence of innovative solutions such as automated machine learning (AutoML) and integrated platforms that combine data preparation, model building, and deployment capabilities. The market segmentation reveals significant opportunities across various offerings and deployment models. While the platform segment holds a larger share, the services segment is poised for significant growth driven by the need for expert consulting and support in data science projects. Geographically, North America currently dominates the market, but the Asia-Pacific region is expected to witness faster growth due to increasing digitalization and technological advancements. Key players like IBM, Google, Microsoft, and Amazon are driving innovation and competition, with new entrants continuously emerging, adding to the market's dynamism. While challenges such as data security and privacy concerns remain, the overall market outlook is exceptionally positive, promising considerable growth over the forecast period. Continued technological innovation, coupled with rising adoption across a wider array of industries, will be central to the market's continued expansion. Recent developments include: November 2023 - Stagwell announced a partnership with Google Cloud and SADA, a Google Cloud premier partner, to develop generative AI (gen AI) marketing solutions that support Stagwell agencies, client partners, and product development within the Stagwell Marketing Cloud (SMC). The partnership will help in harnessing data analytics and insights by developing and training a proprietary Stagwell large language model (LLM) purpose-built for Stagwell clients, productizing data assets via APIs to create new digital experiences for brands, and multiplying the value of their first-party data ecosystems to drive new revenue streams using Vertex AI and open source-based models., May 2023 - IBM launched a new AI and data platform, watsonx, it is aimed at allowing businesses to accelerate advanced AI usage with trusted data, speed and governance. IBM also introduced GPU-as-a-service, which is designed to support AI intensive workloads, with an AI dashboard to measure, track and help report on cloud carbon emissions. With watsonx, IBM offers an AI development studio with access to IBMcurated and trained foundation models and open-source models, access to a data store to gather and clean up training and tune data,. Key drivers for this market are: Rapid Increase in Big Data, Emerging Promising Use Cases of Data Science and Machine Learning; Shift of Organizations Toward Data-intensive Approach and Decisions. Potential restraints include: Rapid Increase in Big Data, Emerging Promising Use Cases of Data Science and Machine Learning; Shift of Organizations Toward Data-intensive Approach and Decisions. Notable trends are: Small and Medium Enterprises to Witness Major Growth.
Facebook
Twitter
According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.
One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.
Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.
The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.
From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.
The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro