This map was created to be used in the CBF website map gallery as updated satellite imagery content for the Chesapeake Bay watershed.This map includes the Chesapeake Bay watershed boundary, state boundaries that intersect the watershed boundary, and NLCD 2019 Land Cover data as well as a imagery background. This will be shared as a web application on the CBF website within the map gallery subpage.
The statewide dataset contains a combination of land cover mapping from 2016 aerial imagery and land use derived from standardized assessor parcel information for Massachusetts. The data layer is the result of a cooperative project between MassGIS and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). Funding was provided by the Mass. Executive Office of Energy and Environmental Affairs.
This land cover/land use dataset does not conform to the classification schemes or polygon delineation of previous land use data from MassGIS (1951-1999; 2005).In this map service layer hosted at MassGIS' ArcGIS Server, all impervious polygons are symbolized by their generalized use code; all non-impervious land cover polygons are symbolized by their land cover category. The idea behind this method is to use both cover and use codes to provide a truer picture of how land is being used: parcel use codes may indicate allowed or assessed, not actual use; land cover alone (especially impervious) does not indicate actual use.
See the full datalayer description for more details.This map service is best displayed at large (zoomed in) scales. Also available are a Feature Service and a Tile Service (cache). The tile cache will display very quickly in in ArcGIS Online, ArcGIS Desktop, and other applications that can consume tile services.
Several GIS layers are available for the Hastings Reservation and surrounding area. Layers include USGS topographic map and topographic grid, Hastings place names, property boundaries and assessor parcel numbers, Calhoon’s small mammal trap line locations, aerial color photos from 1995, Lauryn Benedict’s trap locations, John Davis’ Towhee trap locations, infrastructure features, IKONOS satellite remote sensing vegetation pictures, and ground truthed IKONOS-based vegetation classification map.
Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid tics and italicized grid coordinate markers and outlines of map sheet boundaries. Each grid square is 3500 x 4500 feet. Each Index Sheet contains 16 lot/block sheets, labeled from left to right, top to bottom (4 across, 4 down): A, B, C, D, E, F, G, H, J, K, L, M, N, P, R, S. The first (4) numeric characters in a parcelID indicate the Index sheet in which the parcel can be found, the alpha character identifies the block in which most (or all) of the property lies.
Land Cover Map 2021 (LCM2021) is a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2021. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2021. Land cover maps describe the physical material on the surface of the country. For example grassland, woodland, rivers & lakes or man-made structures such as roads and buildingsThis is a 10 m Classified Pixel dataset, classified to create a single mosaic of national cover. Provenance and quality:UKCEH’s automated land cover classification algorithms generated the 10m classified pixels. Training data were automatically selected from stable land covers over the interval of 2017 to 2019. A Random Forest classifier used these to classify four composite images representing per season median surface reflectance. Seasonal images were integrated with context layers (e.g., height, aspect, slope, coastal proximity, urban proximity and so forth) to reduce confusion among classes with similar spectra.Land cover was validated by organising the pixel classification into a land parcel framework (the LCM2021 Classified Land Parcels product). The classified land parcels were compared to known land cover producing confusion matrix to determine overall and per class accuracy.View full metadata information and download the data at catalogue.ceh.ac.uk
This dataset consists of the vector version of the Land Cover Map 2015 (LCM2015) for Great Britain. The vector data set is the core LCM data set from which the full range of other LCM2015 products is derived. It provides a number of attributes including land cover at the target class level (given as an integer value and also as text), the number of pixels within the polygon classified as each land cover type and a probability value provided by the classification algorithm (for full details see the LCM2015 Dataset Documentation). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019. Full details about this dataset can be found at https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73
The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.
This data set includes: (1) fine-scale snow and land cover maps from two mountainous study sites in the Western U.S., produced using machine-learning models trained to extract land cover data from WorldView-2 and WorldView-3 stereo panchromatic and multispectral images; (2) binary snow maps derived from the land cover maps; and (3) 30 m and 465 m fractional snow-covered area (fSCA) maps, produced via downsampling of the binary snow maps. The land cover classification maps feature between three and six classes common to mountainous regions and integral for accurate stereo snow depth mapping: illuminated snow, shaded snow, vegetation, exposed surfaces, surface water, and clouds. Also included are Landsat and MODSCAG fSCA map products. The source imagery for these data are the Maxar WorldView-2 and Maxar WorldView-3 Level-1B 8-band multispectral images, orthorectified and converted to top-of-atmosphere reflectance. These Level-1B images are available under the NGA NextView/EnhancedView license.
This dataset consists of the 1km raster, dominant target class version of the Land Cover Map 2015 (LCM2015) for Great Britain. The 1km dominant coverage product is based on the 1km percentage product and reports the habitat class with the highest percentage cover for each 1km pixel. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019. Full details about this dataset can be found at https://doi.org/10.5285/c4035f3d-d93e-4d63-a8f3-b00096f597f5
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/satellite-land-cover/satellite-land-cover_8423d13d3dfd95bbeca92d9355516f21de90d9b40083a915ead15a189d6120fa.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/satellite-land-cover/satellite-land-cover_8423d13d3dfd95bbeca92d9355516f21de90d9b40083a915ead15a189d6120fa.pdf
This dataset provides global maps describing the land surface into 22 classes, which have been defined using the United Nations Food and Agriculture Organization’s (UN FAO) Land Cover Classification System (LCCS). In addition to the land cover (LC) maps, four quality flags are produced to document the reliability of the classification and change detection. In order to ensure continuity, these land cover maps are consistent with the series of global annual LC maps from the 1990s to 2015 produced by the European Space Agency (ESA) Climate Change Initiative (CCI), which are also available on the ESA CCI LC viewer. To produce this dataset, the entire Medium Resolution Imaging Spectrometer (MERIS) Full and Reduced Resolution archive from 2003 to 2012 was first classified into a unique 10-year baseline LC map. This is then back- and up-dated using change detected from (i) Advanced Very-High-Resolution Radiometer (AVHRR) time series from 1992 to 1999, (ii) SPOT-Vegetation (SPOT-VGT) time series from 1998 to 2012 and (iii) PROBA-Vegetation (PROBA-V), Sentinel-3 OLCI (S3 OLCI) and Sentinel-3 SLSTR (S3 SLSTR) time series from 2013. Beyond the climate-modelling communities, this dataset’s long-term consistency, yearly updates, and high thematic detail on a global scale have made it attractive for a multitude of applications such as land accounting, forest monitoring and desertification, in addition to scientific research.
This image service contains high-resolution land cover data for the states of Nebraska, South Dakota, and North Dakota. These data are a digital representation of land cover derived from 1-meter aerial imagery from the USDA National Agriculture Imagery Program (NAIP.) The year of NAIP used for each state was 2014.Data are intended for use in rural areas and therefore do not include land cover in cities and towns. Land cover classes (tree cover, other land cover, or water) were mapped using an object-based image analysis approach and supervised classification. These data are designed for conducting geospatial analyses and for producing cartographic products. In particular, these data are intended to depict the location of tree cover in the county. The mapping procedures were developed specifically for agricultural landscapes that are dominated by annual crops, rangeland, and pasture and where tree cover is often found in narrow configurations, such as windbreaks and riparian corridors. Because much of the tree cover in agricultural areas of the United States occurs in windbreaks and narrow riparian corridors, many geospatial datasets derived from coarser-resolution satellite data (such as Landsat), do not capture these landscape features. This dataset is intended to address this particular data gap. These data can be downloaded by county at the Forest Service Research Data Archive. Nebraska: https://www.fs.usda.gov/rds/archive/catalog/RDS-2019-0038 South Dakota: https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0068 North Dakota: https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0067 A Kansas dataset was also developed using the same methods and is located at: Kansas data download: https://www.fs.usda.gov/rds/archive/catalog/RDS-2019-0052 Kansas map service: https://data-usfs.hub.arcgis.com/documents/high-resolution-tree-cover-of-kansas-2015-map-service/explore
To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off. Check on 'Download Parcel Data by City/Town' and click in the map for links to download all parcel data for that municipality.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThe map displays land property boundaries from assessor parcel maps across Massachusetts. Parcel information is from local assessor databases. More...Read about and download parcel dataAlso available: an accessible, non-map-based Property Information FinderDISCLAIMER: Assessor’s parcel mapping is a representation of property boundaries, not an authoritative source. The authoritative record of property boundaries is recorded at the registries of deeds. A legally authoritative map of property boundaries can only be produced by a professional land surveyor.V 1.4 MassGIS, EOTSS 2021
This Image Service of Maryland Property Data allows for the manipulation of the display properties of the Statewide Tax Maps dataset. This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/ImageServer
To access the tax lot layer you will need to contact the county Assessor's office. ORMAP is a statewide digital cadastral base map that is publicly accessible, continually maintained, supports the Oregon property tax system, supports a multi-purpose land information system, strives to comply with appropriate state and national standards, and will continue to be improved over time.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.
This data set provides a landcover map with 16 landcover classes for the northern coastal plain of the the Arctic National Wildlife Refuge (ANWR) on the North Slope of Alaska. The map was derived from Landsat Thematic Mapper (Landsat TM) data, Digital Elevation Models (DEMs), aerial photographs, existing maps, and extensive ground-truthing. The data used to derive the map cover the period 1982 to 1993.
This is the land parcels (polygon) dataset for the UKCEH Land Cover Map of 2019 (LCM2019) representing Great Britain. It describes Great Britain's land cover in 2019 using UKCEH Land Cover Classes, which are based on UK Biodiversity Action Plan broad habitats. This dataset was derived from the corresponding LCM2019 20m classified pixels dataset. All further LCM2019 datasets for Great Britain are derived from this land parcel product. A range of land parcel attributes are provided. These include the dominant UKCEH Land Cover Class given as an integer value, and a range of per-parcel pixel statistics to help to assess classification confidence and accuracy; for a full explanation please refer to the dataset documentation. LCM2019 represents a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2019. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2019. LCM2019 was simultaneously released with LCM2017 and LCM2018. These are the latest in a series of UKCEH land cover maps, which began with the 1990 Land Cover Map of Great Britain (now usually referred to as LCM1990) followed by UK-wide land cover maps LCM2000, LCM2007 and LCM2015. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Aerial image (true ortho) mosaic of the City of Melbourne municipal area. The true ortho image has been corrected to provide a true ‘top down’ view of the city, removing building lean and other interference typically found in oblique aerial imagery. The aerial image was captured May 2020 and is available for download in georeferenced format (JPEG2000). Capture Information - Capture Date: May 2020 - Capture Pixel Size: 10cm ground sample distance - Map Projection: MGA 2020 Zone 55 – 11 cm absolute accuracy Limitations:
Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects. Preview Image: See an example image showing the data quality of the aerial:
Download: Download the aerial image data as a zipped .jpg2000 file. (45GB)
Attachment regarding 1. A rezoning request by Morgan Property Group on Parcels 2719, 2720, 2721, 69884, 60612, 2508, from R-1 Residential to CD-CB Conditional District Community Business for a retail shopping center with specific uses prohibited. The total accumulative parcel totals is approximately 27.53 acres.
Data from 1988 LandSAT satellite interpretation and 1989 aerial flight (photographic scale 1:75,000) with photointerpretation at 1:100,000 scale. minimum surface has 25 with 39 land use classes. Paper version in print scale 1:250,000
This map was created to be used in the CBF website map gallery as updated satellite imagery content for the Chesapeake Bay watershed.This map includes the Chesapeake Bay watershed boundary, state boundaries that intersect the watershed boundary, and NLCD 2019 Land Cover data as well as a imagery background. This will be shared as a web application on the CBF website within the map gallery subpage.