95 datasets found
  1. c

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csv(2343)Available download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  2. Households who spend more than 30 percent of income on housing

    • data.amerigeoss.org
    esri rest, html
    Updated Jan 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Households who spend more than 30 percent of income on housing [Dataset]. https://data.amerigeoss.org/id/dataset/households-who-spend-more-than-30-percent-of-income-on-housing
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jan 7, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This map shows households that spend more than 30 percent of their income on housing, a threshold widely used by many affordable housing advocates and official government sources including Housing and Urban Development. Census asks about income and housing costs to understand whether housing is affordable in local communities. When housing is not sufficient or not affordable, income data helps communities:

    • Enroll eligible households in programs designed to assist them.
    • Qualify for grants from the Community Development Block Grant (CDBG), HOME Investment Partnership Program, Emergency Solutions Grants (ESG), Housing Opportunities for Persons with AIDS (HOPWA), and other programs.
    When rental housing is not affordable, the Department of Housing and Urban Development (HUD) uses rent data to determine the amount of tenant subsidies in housing assistance programs.

    Map opens in Atlanta. Use the bookmarks or search bar to view other cities. Data is symbolized to show the relationship between burdensome housing costs for owner households with a mortgage and renter households:

    legned

    This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  3. Proportion of income to housing across India 2010-2023

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Proportion of income to housing across India 2010-2023 [Dataset]. https://www.statista.com/statistics/1032919/india-house-price-income-ratio/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 2023, Ahmedabad had the most affordable housing market of the eight biggest metropolitan areas in India with a proportion of 21 percent of income to monthly instalment of a housing unit. In Mumbai the affordability index was at 51 percent, the only city with higher than threshold affordability ratio set at 50 percent. However, the affordability index has significantly improved from pre-pandemic times in 2019 for many cities including Mumbai, Bengaluru and NCR.

  4. Housing costs as percentage of household income in New York City 2021

    • statista.com
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Housing costs as percentage of household income in New York City 2021 [Dataset]. https://www.statista.com/statistics/1235458/housing-costs-percentage-share-of-income-in-new-york-city-usa/
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States, New York
    Description

    Out of a total of 7.8 million housing units in New York City in 2021, approximately 924,700 homes had housing costs between 15 and 19 percent of the household budget. New York City is notoriously known for its shortage of affordable housing: Overall, for a large percentage of New York City residents, housing costs exceeded 35 percent.

  5. House-price-to-income ratio in selected countries worldwide 2023

    • statista.com
    • flwrdeptvarieties.store
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2023 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2023. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 117.5 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  6. Average rent affordable for different income type households in California,...

    • statista.com
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average rent affordable for different income type households in California, U.S. 2024 [Dataset]. https://www.statista.com/statistics/1255166/average-rent-affordable-for-different-income-california-usa/
    Explore at:
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    California, United States
    Description

    The average monthly rent in California for a two-bedroom apartment was 2,464 U.S. dollars in 2024, while a one-bedroom unit cost 1,989 U.S. dollars. Only renters who earn the area median income (AMI) can afford two-bedroom housing in California. Rent affordable to renters with full-time jobs at mean renter wage, or 30 percent area median income, was lower than the fair market rent of a two-bedroom and one-bedroom apartment in California, making this housing in this state not affordable for them. The rent in California ranked highest among all other states in the United States for a two bedroom apartment in 2024.

  7. Housing affordability index in the U.S. 2000-2024

    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Housing affordability index in the U.S. 2000-2024 [Dataset]. https://www.statista.com/statistics/201568/change-in-the-composite-us-housing-affordability-index-since-1975/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of 107.1 index points in 2006. In 2024, the housing affordability index measured 98.1 index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached 389,000 U.S. dollars in 2023.

  8. g

    Low-Income Housing Tax Credit (LIHTC) Qualified Census Tract (QCT) |...

    • gimi9.com
    Updated Jun 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Low-Income Housing Tax Credit (LIHTC) Qualified Census Tract (QCT) | gimi9.com [Dataset]. https://www.gimi9.com/dataset/data-gov_low-income-housing-tax-credit-lihtc-qualified-census-tract-qct/
    Explore at:
    Dataset updated
    Jun 15, 2020
    Description

    The Low-Income Housing Tax Credit (LIHTC) is the most important resource for creating affordable housing in the United States today. The LIHTC database, created by HUD and available to the public since 1997, contains information on 48,672 projects and 3.23 million housing units placed in service since 1987. Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Difficult Development Areas (DDA) are areas with high land, construction and utility costs relative to the area median income and are based on Fair Market Rents, income limits, the 2010 census counts, and 5-year American Community Survey (ACS) data.

  9. a

    Location Affordability Index

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • +6more
    Updated May 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Location Affordability Index [Dataset]. https://hub.arcgis.com/maps/447a461f048845979f30a2478b9e65bb
    Explore at:
    Dataset updated
    May 10, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**

    Title: Location Affordability Index - NMCDC Copy

    Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.

    Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.

    Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC

    Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.

    Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb

    UID: 73

    Data Requested: Family income spent on basic need

    Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id

    Date Acquired: Map copied on May 10, 2022

    Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6

    Tags: PENDING

  10. F

    Housing Affordability Index (Fixed)

    • fred.stlouisfed.org
    json
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Affordability Index (Fixed) [Dataset]. https://fred.stlouisfed.org/series/FIXHAI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 14, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Housing Affordability Index (Fixed) (FIXHAI) from Jan 2024 to Jan 2025 about fixed, housing, indexes, and USA.

  11. T

    Housing Affordability Index

    • internal.open.piercecountywa.gov
    • open.piercecountywa.gov
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Washington, Runstad Center for Real Estate Studies (2024). Housing Affordability Index [Dataset]. https://internal.open.piercecountywa.gov/Demographics/Housing-Affordability-Index/q79c-akif
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, application/geo+json, kml, kmzAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    University of Washington, Runstad Center for Real Estate Studies
    Description

    The Housing Affordability Index, calculated by the Runstad Center for Real Estate Studies, measures the ability of a middle-income family to carry the mortgage payments on a median-price home. When the index is 100 there is a balance between the family’s ability to pay and the cost. Higher indexes indicate housing is more affordable.

    For example, an index of 126 means that a median-income family has 26 percent more income than the bare minimum required to qualify for a mortgage on a median-price home. An index of 80 means that a median-income family has less income than the minimum required.

  12. s

    Housing Burden - Dataset - CKAN

    • ndp.sdsc.edu
    • nationaldataplatform.org
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Burden - Dataset - CKAN [Dataset]. https://ndp.sdsc.edu/catalog/dataset/clm-housing-burden3
    Explore at:
    Dataset updated
    Mar 7, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Housing-Burdened Low-Income Households. Percent of households in a census tract that are both low income (making less than 80% of the HUD Area Median Family Income) and severely burdened by housing costs (paying greater than 50% of their income to housing costs). (5-year estimates, 2013-2017). The cost and availability of housing is an important determinant of well- being. Households with lower incomes may spend a larger proportion of their income on housing. The inability of households to afford necessary non-housing goods after paying for shelter is known as housing-induced poverty. California has very high housing costs relative to much of the country, making it difficult for many to afford adequate housing. Within California, the cost of living varies significantly and is largely dependent on housing cost, availability, and demand. Areas where low-income households may be stressed by high housing costs can be identified through the Housing and Urban Development (HUD) Comprehensive Housing Affordability Strategy (CHAS) data. We measure households earning less than 80% of HUD Area Median Family Income by county and paying greater than 50% of their income to housing costs. The indicator takes into account the regional cost of living for both homeowners and renters, and factors in the cost of utilities. CHAS data are calculated from US Census Bureau's American Community Survey (ACS).

  13. Low and Moderate Income Areas

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low and Moderate Income Areas [Dataset]. https://catalog.data.gov/dataset/hud-low-and-moderate-income-areas
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

  14. D

    Multifamily Housing Construction Sites

    • detroitdata.org
    • data.detroitmi.gov
    • +1more
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Multifamily Housing Construction Sites [Dataset]. https://detroitdata.org/dataset/multifamily-housing-construction-sites
    Explore at:
    zip, arcgis geoservices rest api, csv, gdb, txt, kml, geojson, gpkg, xlsx, htmlAvailable download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    City of Detroit
    Description

    This dataset contains multifamily affordable and market-rate housing sites (typically 5+ units) in the City of Detroit that have been built or rehabbed since 2015, or are currently under construction. Most sites are rental housing, though some are for sale. The data are collected from developers, other government departments and agencies, and proprietary data sources in order to track new multifamily and affordable housing construction and rehabilitation occurring in throughout the city, in service of the City's multifamily affordable housing goals. Data are compiled by various teams within the Housing and Revitalization Department (HRD), led by the Preservation Team. This dataset reflects HRD's current knowledge of multifamily units under construction in the city and will be updated as the department's knowledge changes. For more information about the City's multifamily affordable housing policies and goals, visit here.Affordability level for affordable units are measured by the percentage of the Area Median Income (AMI) that a household could earn for that unit to be considered affordable for them. For example, a unit that rents at a 60% AMI threshold would be affordable to a household earning 60% or less of the median income for the area. Rent affordability is typically defined as housing costs consuming 30% or less of monthly income. Regulated housing programs are designed to serve households based on certain income benchmarks relative to AMI, and these income benchmarks vary based on household size. Detroit city's AMI levels are set by the Department of Housing and Urban Development (HUD) for the Detroit-Warren-Livonia, MI Metro Fair Market Rent (FMR) area. For more information on AMI in Detroit, visit here.

  15. a

    SDEPUB.SDE.Housing and Transportation Affordability Type 2 Family

    • hub.arcgis.com
    Updated Sep 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jasonelliott (2018). SDEPUB.SDE.Housing and Transportation Affordability Type 2 Family [Dataset]. https://hub.arcgis.com/datasets/5a34bd6eab8341c68a897a8b53fbf577
    Explore at:
    Dataset updated
    Sep 25, 2018
    Dataset authored and provided by
    jasonelliott
    Area covered
    Description

    This layer was developed by the Atlanta Regional Commission using data from the U.S. Census Bureau's American Community Survey to show the affordability of housing and transportation costs, as a percentage of income, for: Type 2 Families: Very Low Income Individual with 1 Member, Including 1 Commuter. Measures: Housing and Transportation Costs as Percent of Income. Housing Costs as Percent of Income. Transportation Costs as Percent of Income. Annual Vehicle Miles Traveled. Annual Transit Trips. Source: American Community Survey, Atlanta Regional Commission. Date Accessed: May 2015

  16. Average rent affordable for low-income households in the U.S. 2024

    • statista.com
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average rent affordable for low-income households in the U.S. 2024 [Dataset]. https://www.statista.com/statistics/1064468/average-rent-affordable-for-low-income-households-usa/
    Explore at:
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, the average monthly rent affordable to a family of four with a household income at the poverty line was 780 U.S. dollars. However, the average fair market rent for a two-bedroom rental home was 1,670 U.S. dollars per month in that year.

  17. Housing Affordability

    • nationmaster.com
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NationMaster (2020). Housing Affordability [Dataset]. https://www.nationmaster.com/nmx/ranking/housing-affordability
    Explore at:
    Dataset updated
    Jul 31, 2020
    Dataset authored and provided by
    NationMaster
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2005 - 2019
    Area covered
    Mexico, Ireland, Luxembourg, Lithuania, United Kingdom, Portugal, France, Australia, New Zealand, Russia
    Description

    Mexico Housing Affordability rose 0.4points in 2019, compared to the previous year.

  18. House price to income ratio index in the U.S. 2012-2024, per quarter

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price to income ratio index in the U.S. 2012-2024, per quarter [Dataset]. https://www.statista.com/statistics/591435/house-price-to-income-ratio-usa/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The house price to income ratio in the U.S. increased in 2023, after falling slightly in the second half of 2022. The ratio measures the development of housing affordability and is calculated by dividing the nominal house price by the nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. In the third quarter of 2024, the index score amounted to 130.3, which means that house price growth has outpaced income growth by over 30 percent since 2015.Stagnant wages Average annual real wages steadily rose until 2014 but have since remained stagnant. However, single-family house prices have continued to increase. This disparity has resulted in decreased housing affordability. Average wages needed to buy a home The share of wages needed to buy a median priced home in the United States has been steadily increasing since 2012. This trend is reflected in the house price to income ratio as well. The availability of affordable housing will become more important, if the price to income ratio continues to develop in this way.

  19. d

    Housing Cost Burden

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Housing Cost Burden [Dataset]. https://catalog.data.gov/dataset/housing-cost-burden-6a9ec
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.

  20. l

    Location Affordability Index v 1.0

    • data.lojic.org
    • hudgis-hud.opendata.arcgis.com
    • +2more
    Updated Jul 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Location Affordability Index v 1.0 [Dataset]. https://data.lojic.org/items/8eaa0b89826244ae9246915199462328
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    The Location Affordability Index (LAI) estimates the percentage of a family’s income dedicated to the combined cost of housing and transportation in a given location. Because what is “affordable” is different for everyone, users can choose among a diverse set of family profiles—which vary by household income, size, and number of commuters—and see the affordability landscape for each in a given neighborhood, city, or region. The Location Affordability Index (LAI) estimates three dependent variables of transportation behavior (auto ownership, auto use, and transit use) as functions of 14 independent variables (median income, per capita income, average household size, average commuters per household, residential density, gross density, block density, intersection density, transit connectivity, transit frequency of service, transit access shed, employment access, job diversity, and average commute distance). To hone in on the built environment’s influence on transportation costs, the independent household variables (income, household size, and commuters per household) are set at fixed values to control for any variation they might cause. The LAI also estimates two dependent variables of housing costs (Selected Monthly Owner Costs and Gross Rent) as functions of 16 independent variables: regional median selected monthly owner costs and regional median gross rent in addition to the 14 variables used in the transportation model.

    To learn more about the Location Affordability Index (v.1.0) visit: https://www.locationaffordability.info/LAPMethods.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Location Affordability Indev v.1.0. Date of Coverage: 2005-2009 https://www.locationaffordability.info/LAPMethodsV2.pdf

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability

Housing Affordability

Explore at:
csv(2343)Available download formats
Dataset updated
Oct 17, 2024
Dataset provided by
Champaign County Regional Planning Commission
Description

The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

[2] Ibid.

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

Search
Clear search
Close search
Google apps
Main menu