As of 2022, South Africa's population increased and counted approximately 60.6 million inhabitants in total, of which the majority (roughly 49.1 million) were Black Africans. Individuals with an Indian or Asian background formed the smallest population group, counting approximately 1.56 million people overall. Looking at the population from a regional perspective, Gauteng (includes Johannesburg) is the smallest province of South Africa, though highly urbanized with a population of nearly 16 million people.
Increase in number of households
The total number of households increased annually between 2002 and 2022. Between this period, the number of households in South Africa grew by approximately 65 percent. Furthermore, households comprising two to three members were more common in urban areas (39.2 percent) than they were in rural areas (30.6 percent). Households with six or more people, on the other hand, amounted to 19.3 percent in rural areas, being roughly twice as common as those in urban areas.
Main sources of income
The majority of the households in South Africa had salaries or grants as a main source of income in 2019. Roughly 10.7 million drew their income from regular wages, whereas 7.9 million households received social grants paid by the government for citizens in need of state support.
In 2021, there were around *** million children aged 0-4 years in Africa. In total, the population aged 17 years and younger amounted to approximately *** million. In contrast, only approximately ** million individuals were aged 65 years and older as of the same year. The youngest continent in the world Africa is the continent with the youngest population worldwide. As of 2023, around ** percent of the population was aged 15 years and younger, compared to a global average of 25 percent. Although the median age on the continent has been increasing annually, it remains low at around ***years. There are several reasons behind the low median age. One factor is the low life expectancy at birth: On average, the male and female population in Africa live between 61 and 65 years, respectively. In addition, poor healthcare on the continent leads to high mortality, also among children and newborns, while the high fertility rate contributes to lowering the median age. Cross-country demographic differences Africa’s demographic characteristics are not uniform across the continent. The age structure of the population differs significantly from one country to another. For instance, Niger and Uganda have the lowest median age in Africa, at **** and **** years, respectively. Not surprisingly, these countries also register a high crude birth rate. On the other hand, North Africa is the region recording the highest life expectancy at birth, with Algeria leading the ranking in 2023.
The 1991 South African population census was an enumeration of the population and housing in South Africa.The census collected data on dwellings and individuals' demographic, family and employment details.
The South African Census 1991 covered the whole of South Africa. The "homelands" of Transkei, Bophuthatswana, Venda and Ciskei were enumerated separately and the dataset contains data files for Bophuthatswana, Venda and Ciskei. The dataset does not include a data file for the Transkei as this was never provided by Statistics South Africa.
Households and individuals
The 1991 Population Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night (i.e. at midnight between 7 and 8 March 1991) were therefore enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were enumerated and included in the figures. The Diplomatic and Consular Corps of foreign countries were not included. Crews and passengers of ships were also not enumerated, except those who were present at the harbours of the RSA on census night. Similarly, residents of the RSA who were absent from the night were not enumerated. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census enumeration data
As a result of the unplanned and unstructured nature of certain residential areas, as well as the inaccessibility of certain areas during the preparations for the enumeration of census, comprehensive door-to-door surveys were not possible. The Human Sciences Research Council had to enumerate these areas by means of sample surveys. 88 areas country-wide were enumerated on this basis.
Face-to-face [f2f]
The 1991 Population Census questionnaire covered particulars of households: dwelling type, ownership type, type of area (rural/urban) and particulars of individuals: relationship within household, sex, age, marital status, population group, birthplace, citizenship, duration of residency, religion, education level, language, literacy,employment status, occupation, economic sector and income.
The 1970 South African Population Census collected data on dwellings and individuals' demographic, migration, family and employment details.
National coverage of the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal, and the so-called National States of Ciskei, KwaZulu, Gazankulu, Lebowa, Qwaqwa, Kangwane, Kwandebele, Transkei and Bophuthatswana.
The units of analysis for the South African Census 1970 were households and individuals
The South African population census of 1970 covered all de jure household members (usual residents) of South Africa and the "national states".
The Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night were enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were not enumerated and included in the figures. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census/enumeration data [cen]
The 1970 Census was a full count for Whites, Coloureds and Asians, and a 5% sample for Blacks (Africans)
The country was divided into 400 census districts for the 1970 Census. In most cases the boundaries of the census districts corresponded with those of the magisterial districts. However, in some cases the boundaries did not correspond, particularly in the areas in and around the "National States". This was to facilitate the administration of the census and to make it easier to exclude figures of the "National states" from provincial totals.
Face-to-face [f2f]
The 1970 Population Census of the Republic of South Africa questionnaires were: Form 01, to be completed by "Whites, Coloured and Asiatics" Form 02, to be completed by "Bantu" Form 03, for families, households and dwellings
Form 01 collected data on relationship to household head, population group, sex, age, marital status, place of birth, and citizenship, as well as usual place of residence, home language, religion, level of education and income. Employment data collected included occupation, employment status and industry type.
Form 02 collected data for African South Africans on relationship to household head, sex, age, marital status, fertility, place of birth, home language and literacy, religion and level of education. Employment data collected included occupation, employment status and industry type.
Form 03 collected household data, including data on dwelling type, building material of dwelling walls, number of rooms and age of the dwelling. Data on home ownership. Data was also collected on the number and sex of household members and their relationship to the household head. Data on household heads included their population group, age and marital status. Income data was also collected, for husbands and wives. Data on home ownership, household size and domestic workers was also collected, but for Urban households only.
The population census conducted in South Africa in 1985 covered the whole of South Africa, but excluded the "Homelands" of Transkei, Bophutatswana, Ciskei, and Venda. This dataset is the full census, as opposed to the 10% sample datasets provided by Statistics South Africa from 1996 onwards.
The 1985 census covered the so-called white areas of South Africa - the provinces of the Cape, the Orange Free State, Transvaal, and Natal - and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset has 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
All persons who were present on Republic of South African territory during census night were enumerated. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were enumerated but not included in the final data. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census/enumeration data [cen]
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
The 1985 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset contains 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
The South African census 1985 census covered the provinces of the Cape, the Orange Free State, Transvaal, and Nata and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
Census/enumeration data [cen]
Although the census was meant to cover all residents of the so called white areas of South Africa, in 88 areas door-to-door surveys were not possible and the population in these areas was enumerated by means of a sample survey conducted by the Human Sciences Research Council.
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
The 1980 South African Population Census was a count of all persons present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980). The purpose of the population census was to collect detailed statistics on population size, composition and distribution at small area level. The 1980 South African Population Census contains data collected on HOUSEHOLDS: household goods and dwelling characteristics as well as employment of domestic workers; INDIVIDUALS: population group, citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities
The 1980 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered areas in the so-called National States of Ciskei, KwaZulu, Gazankulu, Lebowa, Qwaqwa, Kangwane, and Kwandebele. The 1980 South African census excluded the "independent states" of Bophuthatswana, Transkei, and Venda. A census data file for Bophuthatswana was released with the final South African Census 1980 dataset.
Households and individuals
The 1980 South African census covered all household members (usual residents).
The 1980 South African Population Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980) were enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were not enumerated and included in the figures. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census enumeration data
Face-to-face [f2f]
The 1980 Population Census questionnaire was administered to all household members and covered household goods and dwelling characteristics, and employment of domestic workers. Questions concerning individuals included those on citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities.
The following questions appear in the questionnaire but the corresponding data has not been included in the data set: PART C: PARTICULARS OF DWELLING: 2. How many separate families (i) Number of families (ii) Number of non-family persons (iii) total number of occupants [i.e. persons in families shown against (i) plus persons shown against 3. Persons employed by household Full-time, Part-time (a) How many persons employed as domestics (b) Total cash wages paid to above –mentioned persons for April 1980 4. Ownership – Do not answer this question if your dwelling is on a farm. (i) Own dwelling – (Including hire-purchase, sectional title property or property of wife): (a) Is the dwelling Fully paid Partly paid-off (b) If partly paid-off, state monthly repayment (include housing subsidy, but exclude insurance. (ii) Rented or occupied free dwelling : (a) Is the dwelling occupied free, rented furnished, rented unfurnished (b) If rented, state monthly rent (c) Is the dwelling owned by the employer? (d) Does it belong to the state, SA Railways, a provincial administration, a divisional council, or a municipality or other local authority? PART D: PARTICULARS OF THE FAMILY 1. Number of members in the family 2. Occupation. (Nature of work done) (a) Head of family (b) Wife 3. Annual income of head of family and wife. Annual income of: Head, Wife (if applicable)
Nigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.
The 2003-2004 South African Demographic and Health Survey is the second national health survey to be conducted by the Department of Health, following the first in 1998. Compared with the first survey, the new survey has more extensive questions around sexual behaviour and for the first time included such questions to a sample of men. Anthropometric measurements were taken on children under five years, and the adult health module has been enhanced with questions relating to physical activity and micro-nutrient intake, important risk factors associated with chronic diseases. The 2003-2004 SADHS has introduced a chapter reporting on the health, health service utilisation and living conditions of South Africa's older population (60 years or older) and how they have changed since 1998. This has been introduced because this component of the population is growing at a much higher rate than the other age groups. The chapter on adolescent health in 1998 focussed on health risk-taking behaviours of people aged 15-19 years. The chapter has been extended in the 2003-2004 SADHS to include indicators of sexual behaviour of youth aged 15-24 years.
A total of 10 214 households were targeted for inclusion in the survey and 7 756 were interviewed, reflecting an 85 percent response rate. The survey used a household schedule to capture basic information about all the members of the household, comprehensive questionnaires to all women aged 15-49, as well as anthropometric measurements of all children five years and younger. In every second household, interviews of all men 15-59 were conducted and in the alternate households, interviews and measurements of all adults 15 years and older were done including heights, weights, waist circumference, blood pressure and peak pulmonary flow. The overall response rate was 75 percent for women, 67 percent for men, 71 percent for adults, and 84 percent for children. This is slightly lower than the overall response rate for the 1998 SADHS, but varied substantially between provinces with a particularly low response rate in the Western Cape.
OBJECTIVES
In 1995 the National Health Information System of South Africa (NHIS/SA) committee identified the need for improved health information for planning services and monitoring programmes. The first South African Demographic and Health Survey (SADHS) was planned and implemented in 1998. At the time of the survey it was agreed that the survey had to be conducted every five years to enable the Department of Health to monitor trends in health services.
STUDY LIMITATIONS AND RECOMMENDATIONS
Comparison of the socio-demographic characteristics of the sample with the 2001 Population Census shows an over-representation of urban areas and the African population group, and an under-representation of whites and Indian females. It also highlights many anomalies in the ages of the sample respondents, indicating problems in the quality of the data of the 2003 survey. Careful analysis has therefore been required to distinguish the findings that can be considered more robust and can be used for decision making. This has involved considering the internal consistency in the data, and the extent to which the results are consistent with other studies.
Some of the key demographic and adult health indicators show signs of data quality problems. In particular, the prevalence of hypertension, and the related indicators of quality of care are clearly problematic and difficult to interpret. In addition, the fertility levels and the child mortality estimates are not consistent with other data sources. The data problems appear to arise from poor fieldwork, suggesting that there was inadequate training, supervision and quality control during the implementation of the survey. It is imperative that the next SADHS is implemented with stronger quality control mechanisms in place. Moreover, consideration should be given to the frequency of future surveys. It is possible that the SADHS has become overloaded - with a complex implementation required in the field. Thus it may be appropriate to consider a more frequent survey with a rotation of modules as has been suggested by the WHO.
The SADHS sample was designed to be a nationally representative sample.
Households and individuals
The population covered by the 2003-2004 SADHS is defined as the universe of all women age 15-49, all men 15-59 in South Africa.
Sample survey data
The SADHS sample was designed to be a nationally representative probability sample of approximately 10000 households. The country was stratified into the nine provinces and each province was further stratified into urban and non-urban areas.
The sampling frame for the SADHS was provided by Statistics South Africa (Stats SA) based on the enumeration areas (EAs) list of approximately 86000 EAs created during the 2001 census. Since the Indian population constitutes a very small fraction of the South African population, the Census 2001 EAs were stratified into Indian and non-Indian. An EA was classified as Indian if the proportion of persons who classified themselves as Indian during Census 2001 enumeration in that EA was 80 percent or more, otherwise it was classified as Non-Indian. Within the Indian stratum, EAs were sorted descending by the proportion of persons classified as Indian. It should be noted that some provinces and non-urban areas have a very small proportion of the Indian population hence the Indian stratum could not be further stratified by province or urban/non-urban. A sample of 1000 households was allocated to the stratum. Probability proportional to size (PPS) systematic sampling was used to sample EAs and the proportion of Indian persons in an EA was the measure of size. The non-Indian stratum was stratified explicitly by province and within province by the four geo types, i.e. urban formal, urban informal, rural formal and tribal. Each province was allocated a sample of 1000 households and within province the sample was proportionally allocated to the secondary strata, i.e. geo type. For both the Indian and Non-Indian strata the sample take of households within an EA was sixteen households. The number of visited households in an EA as recorded in the Census 2001, 09 Books was used as the measure of size (MOS) in the Non-Indian stratum.
The second stage of selection involved the systematic sampling of households/stands from the selected EAs. Funds were insufficient to allow implementation of a household listing operation in selected EAs. Fortunately, most of the country is covered by aerial photographs, which Statistics SA has used to create EA-specific photos. Using these photos, ASRC identified the global positioning system (GPS) coordinates of all the stands located within the boundaries of the selected EAs and selected 16 in each EA, for a total of 10080 selected. The GPS coordinates provided a means of uniquely identifying the selected stand. As a result of the differing sample proportions, the SADHS sample is not self-weighting at the national level and weighting factors have been applied to the data in this report.
A total of 630 Primary Sampling Units (PSUs) were selected for the 2003-2004 SADHS (368 in urban areas and 262 in non-urban areas). This resulted in a total of 10214 households being selected throughout the country1. Every second household was selected for the adult health survey. In this second household, in addition to interviewing all women aged 15-49, all adults aged 15 and over were eligible to be interviewed with the adult health questionnaire. In every alternate household selected for the survey, not interviewed with the adult health questionnaire, all men aged 15-59 years were also eligible to be interviewed. It was expected that the sample would yield interviews with approximately 10000 households, 12500 women aged 15-49, 5000 adults and 5000 men.
Face-to-face [f2f]
The questionnaire for each DHS can be found as an appendix in the final report for each study.
The survey utilised five questionnaires: a Household Questionnaire, a Women's Questionnaire, a Men's Questionnaire, an Adult Health Questionnaire and an Additional Children Questionnaire. The contents of the first three questionnaires were based on the DHS Model Questionnaires. These model questionnaires were adapted for use in South Africa during a series of meetings with a Project Team that consisted of representatives from the National Department of Health, the Medical Research Council, the Human Sciences Research Council, Statistics South Africa, National Department of Social Development and ORCMacro. Draft questionnaires were circulated to other interested groups, e.g. such as academic institutions. The Additional Children and Men's Questionnaires were developed to address information needs identified by stakeholders, e.g. information on children who were not staying with their biological mothers. All questionnaires were developed in English and then translated in all 11 official languages in South Africa (English, Afrikaans, isiXhosa, isiZulu, Sesotho, Setswana, Sepedi, SiSwati, Tshivenda, Xitsonga and isiNdebele).
a) The Household Questionnaire was used to list all the usual members and visitors in the selected households. Basic information was collected on the characteristics of each person listed, including age, sex, education and relationship to the head of the household. Information was collected about social grants, work status and injuries experienced in the last month. An important purpose of the Household Questionnaire was to
In 2023, the population of Africa was projected to grow by 2.34 percent compared to the previous year. The population growth rate on the continent has been constantly over 2.3 percent from 2000 onwards, and it peaked at 2.59 percent between 2012 and 2013. Despite a slowdown in the growth rate, the continent's population will continue to increase significantly in the coming years. The second-largest population worldwide In 2022, the total population of Africa amounted to around 1.4 billion. The number of inhabitants had grown steadily in the previous decades, rising from approximately 810 million in 2000. Driven by a decreasing mortality rate and a higher life expectancy at birth, the African population was forecast to increase to about 2.5 billion individuals by 2050. Africa is currently the second most populous continent worldwide after Asia. However, forecasts showed that Africa could gradually close the gap and almost reach the size of the Asian population in 2100. By that year, Africa might count 3.9 billion people, compared to 4.7 billion in Asia. The world's youngest continent The median age in Africa corresponded to 18.8 years in 2023. Although the median age has increased in recent years, the continent remains the youngest worldwide. In 2023, roughly 40 percent of the African population was aged 15 years and younger, compared to a global average of 25 percent. Africa recorded not only the highest share of youth but also the smallest elderly population worldwide. As of the same year, only three percent of Africa's population was aged 65 years and older. Africa and Latin America were the only regions below the global average of 10 percent. On the continent, Niger, Uganda, and Angola were the countries with the youngest population in 2023.
The South Africa Demographic and Health Survey 2016 (SADHS 2016) is the third DHS conducted in South Africa and follows surveys carried out in 1998 and 2003. The SADHS 2016 was designed to provide up-to-date information on key indicators needed to track progress in South Africa’s health programmes.
The survey was designed to provide representative estimates for main demographic and health indicators for the country as a whole, for urban and non-urban areas separately, and for each of the nine provinces in South Africa: Western Cape, Eastern Cape, Northern Cape, Free State, KwaZulu-Natal, North West, Gauteng, Mpumalanga, and Limpopo.
Households and individuals
The South African Demographic and Health Survey (SADHS) covered the population living in private households in the country.
Sample survey data
The sample for the SADHS 2016 is a stratified sample selected in two stages from the Master Sampling Frame. Stratification was achieved by separating each province into urban, traditional, and farm areas. In total, 26 sampling strata were created (since there are no traditional areas in Western Cape). Samples were selected independently in each sampling stratum by a two-stage selection. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels within a given sampling stratum by sorting the sampling frame according to administrative units at different levels in each stratum and using probability proportional to size selection at the first stage of sampling.
Face-to-face [f2f]
Five questionnaires were used in the SADHS 2016. Interviewers used tablet computers to record responses during interviews.
Of the total 972 PSUs that were selected, fieldwork was not implemented in three PSUs due to concerns about the safety of the interviewers and the questionnaires for another three PSUs were lost in transit. The data file contains information for a total of 966 PSUs. A total of 12,860 households was selected for the sample and 12,247 were successfully interviewed. The shortfall is primarily due to refusals and to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by interviewing teams.
Of the 12,638 households occupied 97 percent were successfully interviewed. In these households, 12,327 women were identified as eligible for the individual women's interview (15-49) and interviews were completed with 11,735 or 95 percent of them. In the one half of the households that were selected for inclusion in the adult health survey 14,928 eligible adults age 15 and over were identified of which 13,827 or 93 percent were interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was about 2 percent.
Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A flexible model to reconstruct education-specific fertility rates: Sub-saharan Africa case study
The fertility rates are consistent with the United Nation World Population Prospects (UN WPP) 2022 fertility rates.
The Bayesian model developed to reconstruct the fertility rates using Demographic and Health Surveys and the UN WPP is published in a working paper.
Abstract
The future world population growth and size will be largely determined by the pace of fertility decline in sub-Saharan Africa. Correct estimates of education-specific fertility rates are crucial for projecting the future population. Yet, consistent cross-country comparable estimates of education-specific fertility for sub-Saharan African countries are still lacking. We propose a flexible Bayesian hierarchical model to reconstruct education-specific fertility rates by using the patchy Demographic and Health Surveys (DHS) data and the United Nations’ (UN) reliable estimates of total fertility rates (TFR). Our model produces estimates that match the UN TFR to different extents (in other words, estimates of varying levels of consistency with the UN). We present three model specifications: consistent but not identical with the UN, fully-consistent (nearly identical) with the UN, and consistent with the DHS. Further, we provide a full time series of education-specific TFR estimates covering five-year periods between 1980 and 2014 for 36 sub-Saharan African countries. The results show that the DHS-consistent estimates are usually higher than the UN-fully-consistent ones. The differences between the three model estimates vary substantially in size across countries, yielding 1980-2014 fertility trends that differ from each other mostly in level only but in some cases also in direction.
Funding
The data set are part of the BayesEdu Project at Wittgenstein Centre for Demography and Global Human Capital (IIASA, OeAW, University of Vienna) funded from the “Innovation Fund Research, Science and Society” by the Austrian Academy of Sciences (ÖAW).
We provide education-specific total fertility rates (ESTFR) from three model specifications: (1) estimated TFR consistent but not identical with the TFR estimated by the UN (“Main model (UN-consistent)”; (2) estimated TFR fully consistent (nearly identical) with the TFR estimated by the UN ( “UN-fully -consistent”, and (3) estimated TFR consistent only with the TFR estimated by the DHS ( “DHS-consistent”).
For education- and age-specific fertility rates that are UN-fully consistent, please see https://doi.org/10.5281/zenodo.8182960
Variables
Country: Country names
Education: Four education levels, No Education, Primary Education, Secondary Education and Higher Education.
Year: Five-year periods between 1980 and 2015.
ESTFR: Median education-specific total fertility rate estimate
sd: Standard deviation
Upp50: 50% Upper Credible Interval
Lwr50: 50% Lower Credible Interval
Upp80: 80% Upper Credible Interval
Lwr80: 80% Lower Credible Interval
Model: Three model specifications as explained above and in the working paper. DHS-consistent, Main model (UN-consistent) and UN-fully consistent.
List of countries:
Angola, Benin, Burkina Faso, Burundi, Cote D'Ivoire, Cameroon, Central African Republic, Chad, Comoros, Congo, Democratic Republic of Congo, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Zambia, Zimbabwe
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundStudies on the barriers migrant women face when trying to access healthcare services in South Africa have emphasized economic factors, fear of deportation, lack of documentation, language barriers, xenophobia, and discrimination in society and in healthcare institutions as factors explaining migrants’ reluctance to seek healthcare. Our study aims to visualize some of the outcome effects of these barriers by analyzing data on maternal death and comparing the local population and black African migrant women from the South African Development Countries (SADC) living in South Africa. The heightened maternal mortality of black migrant women in South Africa can be associated with the hidden costs of barriers migrants face, including xenophobic attitudes experienced at public healthcare institutions.MethodsOur analysis is based on data on reported causes of death (COD) from the South African Department of Home Affairs (DHA). Statistics South Africa (Stats SA) processed the data further and coded the cause of death (COD) according to the WHO classification of disease, ICD10. The dataset is available on the StatsSA website (http://nesstar.statssa.gov.za:8282/webview/) for research and statistical purposes. The entire dataset consists of over 10 million records and about 50 variables of registered deaths that occurred in the country between 1997 and 2018. For our analysis, we have used data from 2002 to 2015, the years for which information on citizenship is reliably included on the death certificate. Corresponding benchmark data, in which nationality is recorded, exists only for a 10% sample from the population and housing census of 2011. Mid-year population estimates (MYPE) also exist but are not disaggregated by nationality. For this reason, certain estimates of death proportions by nationality will be relative and will not correspond to crude death rates.ResultsThe total number of female deaths recorded from the years 2002 to 2015 in the country was 3740.761. Of these, 99.09% (n = 3,707,003) were deaths of South Africans and 0.91% (n = 33,758) were deaths of SADC women citizens. For maternal mortality, we considered the total number of deaths recorded for women between the ages of 15 and 49 years of age and were 1,530,495 deaths. Of these, deaths due to pregnancy-related causes contributed to approximately 1% of deaths. South African women contributed to 17,228 maternal deaths and SADC women to 467 maternal deaths during the period under study. The odds ratio for this comparison was 2.02. In other words, our findings show the odds of a black migrant woman from a SADC country dying of a maternal death were more than twice that of a South African woman. This result is statistically significant as this odds ratio, 2.02, falls within the 95% confidence interval (1.82–2.22).ConclusionThe study is the first to examine and compare maternal death among two groups of women, women from SADC countries and South Africa, based on Stats SA data available for the years 2002–2015. This analysis allows for a better understanding of the differential impact that social determinants of health have on mortality among black migrant women in South Africa and considers access to healthcare as a determinant of health. As we examined maternal death, we inferred that the heightened mortality among black migrant women in South Africa was associated with various determinants of health, such as xenophobic attitudes of healthcare workers toward foreigners during the study period. The negative attitudes of healthcare workers toward migrants have been reported in the literature and the media. Yet, until now, its long-term impact on the health of the foreign population has not been gaged. While a direct association between the heightened death of migrant populations and xenophobia cannot be established in this study, we hope to offer evidence that supports the need to focus on the heightened vulnerability of black migrant women in South Africa. As we argued here, the heightened maternal mortality among migrant women can be considered hidden barriers in which health inequality and the pervasive effects of xenophobia perpetuate the health disparity of SADC migrants in South Africa.
The 1998 South Africa Demographic and Health Survey (SADHS) is the first study of its kind to be conducted in South Africa and heralds a new era of reliable and relevant information in South Africa. The SADHS, a nation-wide survey has collected information on key maternal and child health indicators, and in a first for international demographic and health surveys, the South African survey contains data on the health and disease patterns in adults.
Plans to conduct the South Africa Demographic and Health Survey go as far back as 1995, when the Department of Health National Health Information Systems of South Africa (NHIS/SA) committee, recognised serious gaps in information required for health service planning and monitoring.
Fieldwork was conducted between late January and September 1998, during which time 12,247 households were visited, 17,500 people throughout nine provinces were interviewed and 175 interviewers were trained to interview in 11 languages.
The aim of the 1998 South Africa Demographic and Health Survey (SADHS) was to collect data as part of the National Health Information System of South Africa (NHIS/SA). The survey results are intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving health services in the country. A variety of demographic and health indicators were collected in order to achieve the following general objectives:
(i) To contribute to the information base for health and population development programme management through accurate and timely data on a range of demographic and health indicators. (ii) To provide baseline data for monitoring programmes and future planning. (iii) To build research and research management capacity in large-scale national demographic and health surveys.
The primary objective of the SADHS is to provide up-to-date information on: - basic demographic rates, particularly fertility and childhood mortality levels, - awareness and use of contraceptive methods, - breastfeeding practices, - maternal and child health, - awareness of HIV/AIDS, - chronic health conditions among adults, - lifestyles that affect the health status of adults, and - anthropometric indicators.
It was designed principally to produce reliable estimates of demographic rates (particularly fertility and childhood mortality rates), of maternal and child health indicators, and of contraceptive knowledge and use for the country as a whole, the urban and the non-urban areas separately, and for the nine provinces.
The 1998 South African Demographic and Health Survey (SADHS) covered the population living in private households in the country.
Sample survey data
The 1998 South African Demographic and Health Survey (SADHS) covered the population living in private households in the country. The design for the SADHS called for a representative probability sample of approximately 12,000 completed individual interviews with women between the ages of 15 and 49. It was designed principally to produce reliable estimates of demographic rates (particularly fertility and childhood mortality rates), of maternal and child health indicators, and of contraceptive knowledge and use for the country as a whole, the urban and the non-urban areas separately, and for the nine provinces. As far as possible, estimates were to be produced for the four South African population groups. Also, in the Eastern Cape province, estimates of selected indicators were required for each of the five health regions.
In addition to the main survey of households and women 15-49 that followed the DHS model, an adult health module was administered to a sample of adults aged 15 and over in half of the households selected for the main survey. The adult health module collected information on oral health, occupational hazard and chronic diseases of lifestyle.
SAMPLING FRAME
The sampling frame for the SADHS was the list of approximately 86,000 enumeration areas (EAs) created by Central Statistics (now Statistics South Africa, SSA) for the Census conducted in October 1996. The EAs, ranged from about 100 to 250 households, and were stratified by province, urban and non-urban residence and by EA type. The number of households in the EA served as a measure of size of the EA.
CHARACTERISTICS OF THE SADHS SAMPLE
The sample for the SADHS was selected in two stages. Due to confidentiality of the census data, the sampling was carried out by experts at the CSS according to specifications developed by members of the SADHS team. Within each stratum a two stage sample was selected. The primary sampling units (PSUs), corresponded to the EAs and will be selected with probability proportional to size (PPS), the size being the number of households residing in the EA, or where this was not available, the number of census visiting points in the EA. This led to 972 PSUs being selected for the SADHS (690 in urban areas and 282 in non-urban areas. Where provided by SSA, the lists of visiting points together with the households found in these visiting points, or alternatively a map of the EA which showed the households, was used as the frame for second-stage sampling to select the households to be visited by the SADHS interviewing teams during the main survey fieldwork. This sampling was carried out by the MRC behalf of the SADHS working group. If a list of visiting points or a map was not available from SSA, then the survey team took a systematic sample of visiting points in the field. In an urban EA ten visiting points were sampled, while in a non-urban EA twenty visiting points were sampled. The survey team then interviewed the household in the selected visiting point. If there were two households in the selected visiting point, both households were interviewed. If there were three or more households, then the team randomly selected one household for interview. In each selected household, a household questionnaire was administered; all women between the ages of 15 and 49 were identified and interviewed with a woman questionnaire. In half of the selected households (identified by the SADHS working group), all adults over 15 years of age were also identified and interviewed with an adult health questionnaire.
SAMPLE ALLOCATION
Except for Eastern Cape, the provinces were stratified by urban and non-urban areas, for a total of 16 sampling strata. Eastern Cape was stratified by the five health regions and urban and non-urban within each region, for a total of 10 sampling strata. There were thus 26 strata in total.
Originally, it was decided that a sample of 9,000 women 15-49 with complete interviews allocated equally to the nine provinces would be adequate to provide estimates for each province separately; results of other demographic and health surveys have shown that a minimum sample of 1,000 women is required in order to obtain estimates of fertility and childhood mortality rates at an acceptable level of sampling errors. Since one of the objectives of the SADHS was to also provide separate estimates for each of the four population groups, this allocation of 1,000 women per province would not provide enough cases for the Asian population group since they represent only 2.6 percent of the population (according to the results of the 1994 October Household Survey conducted by SSA). The decision was taken to add an additional sample of 1,000 women to the urban areas of KwaZulu-Natal and Gauteng to try to capture as many Asian women as possible as Asians are found mostly in these areas. A more specific sampling scheme to obtain an exact number of Asian women was not possible for two reasons: the population distribution by population group was not yet available from the 1996 census and the sampling frame of EAs cannot be stratified by population group according to SSA as the old system of identifying EAs by population group has been abolished.
An additional sample of 2,000 women was added to Eastern Cape at the request of the Eastern Cape province who funded this additional sample. In Eastern Cape, results by urban and non-urban areas can be given. Results of selected indicators such as contraceptive knowledge and use can also be produced separately for each of the five health regions but not for urban/non-urban within health region.
Result shows the allocation of the target sample of 12,000 women by province and by urban/nonurban residence. Within each province, the sample is allocated proportionately to the urban/non-urban areas.
In the above allocation, the urban areas of KwaZulu-Natal have been oversampled by about 57 percent while those of Gauteng have been oversampled by less than 1 percent. For comparison purposes, it shows a proportional allocation of the 12,000 women to the nine provinces that would result in a completely self-weighting sample but does not allow for reliable estimates for at least four provinces (Northern Cape, Free State, Mpumalanga and North-West).
The number of households to be selected for each stratum was calculated as follows:
-
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
The number of internet users in Africa was forecast to continuously increase between 2024 and 2029 by in total 327.8 million users (+51.52 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 964.1 million users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like Europe and the Americas.
The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).
National coverage
Individual
Citizens of South Africa who are 18 years and older
Sample survey data [ssd]
Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:
• using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.
The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.
Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.
The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.
Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.
Sample stages Samples are drawn in either four or five stages:
Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.
To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.
South Africa - Sample size: 1,600 - Sampling Frame: The 2011 Population and Housing Census frame, from Statistics South Africa (Stats SA), was used to select individual PSUs. The allocation was based on the estimate of the national adult population from the 2016 Community Survey. - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and rural-urban location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 4 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual to be interviewed
Face-to-face [f2f]
The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.
The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).
Outcome rates: - Contact rate: 86% - Cooperation rate: 60% - Refusal rate: 16% - Response rate: 51%
The sample size yields country-level results with a margin of error of +/-2.5 percentage points at a 95% confidence level.
As of 2022, just over 55 percent of all men in South Africa were classified as single, which was only a slightly larger rate compared to the almost 49 percent of females among the South African adult population. At 10.2 percent, however, women made up a noticeably larger percentage of widows compared to their male counterparts at only 2.7 percent.
South Africa is expected to register the highest unemployment rate in Africa in 2024, with around ** percent of the country's labor force being unemployed. Djibouti and Eswatini followed, with unemployment reaching roughly ** percent and ** percent, respectively. On the other hand, the lowest unemployment rates in Africa were in Niger and Burundi. The continent’s average stood at roughly ***** percent in the same year. Large shares of youth among the unemployed Due to several educational, socio-demographic, and economic factors, the young population is more likely to face unemployment in most regions of the world. In 2024, the youth unemployment rate in Africa was projected at around ** percent. The situation was particularly critical in certain countries. In 2022, Djibouti recorded a youth unemployment rate of almost ** percent, the highest rate on the continent. South Africa followed, with around ** percent of the young labor force being unemployed. Wide disparities in female unemployment Women are another demographic group often facing high unemployment. In Africa, the female unemployment rate stood at roughly ***** percent in 2023, compared to *** percent among men. The average female unemployment on the continent was not particularly high. However, there were significant disparities among African countries. Djibouti and South Africa topped the ranking once again in 2022, with female unemployment rates of around ** percent and ** percent, respectively. In contrast, Niger, Burundi, and Chad were far below Africa’s average, as only roughly *** percent or lower of the women in the labor force were unemployed.
The GHS is an annual household survey which measures the living circumstances of South African households. The GHS collects data on education, health, and social development, housing, access to services and facilities, food security, and agriculture.
The General Household Survey has national coverage.
Households and individuals
The survey covers all de jure household members (usual residents) of households in the nine provinces of South Africa, and residents in workers' hostels. The survey does not cover collective living quarters such as student hostels, old age homes, hospitals, prisons, and military barracks.
Sample survey data
From 2015 the General Household Survey (GHS) uses a Master Sample (MS) frame developed in 2013 as a general-purpose sampling frame to be used for all Stats SA household-based surveys. This MS has design requirements that are reasonably compatible with the GHS. The 2013 Master Sample is based on information collected during the 2011 Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs, were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the Master Sample, since they covered the entire country, and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the Master Sample, with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current Master Sample (3 324) reflect an 8,0% increase in the size of the Master Sample compared to the previous (2008) Master Sample (which had 3 080 PSUs). The larger Master Sample of PSUs was selected to improve the precision (smaller coefficients of variation, known as CVs) of the GHS estimates. The Master Sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are Urban, Tribal and Farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro.
The sample for the GHS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.After allocating the sample to the provinces, the sample was further stratified by geography (primary stratification), and by population attributes using Census 2011 data (secondary stratification).
Computer Assisted Personal Interview
Data was collected with a household questionnaire and a questionnaire administered to a household member to elicit information on household members.
Since 2019, the questionnaire for the GHS series changed and the variables were also renamed. For correspondence between old names (GHS pre-2019) and new name (GHS post-2019), see the document ghs-2019-variables-renamed.
As of 2022, South Africa's population increased and counted approximately 60.6 million inhabitants in total, of which the majority (roughly 49.1 million) were Black Africans. Individuals with an Indian or Asian background formed the smallest population group, counting approximately 1.56 million people overall. Looking at the population from a regional perspective, Gauteng (includes Johannesburg) is the smallest province of South Africa, though highly urbanized with a population of nearly 16 million people.
Increase in number of households
The total number of households increased annually between 2002 and 2022. Between this period, the number of households in South Africa grew by approximately 65 percent. Furthermore, households comprising two to three members were more common in urban areas (39.2 percent) than they were in rural areas (30.6 percent). Households with six or more people, on the other hand, amounted to 19.3 percent in rural areas, being roughly twice as common as those in urban areas.
Main sources of income
The majority of the households in South Africa had salaries or grants as a main source of income in 2019. Roughly 10.7 million drew their income from regular wages, whereas 7.9 million households received social grants paid by the government for citizens in need of state support.