This map shows the percentage of the population in the USA that classify themselves as Black/African American according to the 2010 Census. The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.Additional Census 2010 resources
This map shows the predominant housing type for Black or African American householders in the US. The map shows if the occupied housing units in an area are more likely to be owner-occupied, or renter-occupied. The size of the map symbol represents how many housing units in an area have a Black or African American householder. This map helps to answer questions such as:Where do Black or African Americans live?How many housing units have a Black or African American householder?What type of housing do Black or African Americans live in based on location: rented/owned?By default, the map is zoomed to Chicago, IL. The data is available for the entire US by states, counties, and Census tracts. Zoom to any area to see the pattern there, or use one of the bookmarks to zoom to areas with distinct patterns. The data shown in the map is from the most recent American Community Survey (ACS) estimates. The data is updated automatically each year when the U.S. Census Bureau releases the newest data. For more information about the layer used in this map, and the data processing metadata, visit this Living Atlas item.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: N Daubner, educator, Minnesota Alliance for Geographic EducationGrade/Audience: high schoolResource type: lessonSubject topic(s): migration, historyRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 5. The characteristics, distribution and migration of human populations on the earth’s surface influence human systems (cultural, economic and political systems). Objectives: Students will be able to:
Investigate and present reasons why Africans/African-Americans migrated to or within the United States and whether the migrations were voluntary or forced migrations.
Use maps to identify where and when migrations occurred in the U.S.
Analyze and explain the impact that their assigned migration had or is having on the U.S.
Explain differences and similarities between chosen migrations in an essay.Summary: Using a variety of resources, students will analyze statistics, maps, and selected readings and draw comparisons between their assigned migration period and other African-American migrations in United States history. The students will present their findings and write an essay describing similarities and differences between their assigned migration periods with other migration periods in United States history.
This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics.
This measure answers the question of what is the rate of change for the share of the total city population that is African-American. Calculated the difference of percentage of share over reporting period. Data collected from the U.S. Census Bureau, American Communities Survey (ACS) (1-yr), Race (table B02001), except for 2020 data, which are from the 2020 Decennial Census Count. American Communities Survey is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section.
View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/6p8t-s826
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Black food insecurity rate in the United States was in 2020. Explore a map of black hunger statistics in the United States at the state and local level.
This multi-scale map shows the predominant (most numerous) race/ethnicity living within an area. Map opens at the state level, centered on the lower 48 states. Data is from U.S. Census Bureau's 2020 PL 94-171 data for state, county, tract, block group, and block.The map's colors indicate which of the eight race/ethnicity categories have the highest total count.Race and ethnicity highlights from the U.S. Census Bureau:White population remained the largest race or ethnicity group in the United States, with 204.3 million people identifying as White alone. Overall, 235.4 million people reported White alone or in combination with another group. However, the White alone population decreased by 8.6% since 2010.Two or More Races population (also referred to as the Multiracial population) has changed considerably since 2010. The Multiracial population was measured at 9 million people in 2010 and is now 33.8 million people in 2020, a 276% increase.“In combination” multiracial populations for all race groups accounted for most of the overall changes in each racial category.All of the race alone or in combination groups experienced increases. The Some Other Race alone or in combination group (49.9 million) increased 129%, surpassing the Black or African American population (46.9 million) as the second-largest race alone or in combination group.The next largest racial populations were the Asian alone or in combination group (24 million), the American Indian and Alaska Native alone or in combination group (9.7 million), and the Native Hawaiian and Other Pacific Islander alone or in combination group (1.6 million).Hispanic or Latino population, which includes people of any race, was 62.1 million in 2020. Hispanic or Latino population grew 23%, while the population that was not of Hispanic or Latino origin grew 4.3% since 2010.View more 2020 Census statistics highlights on race and ethnicity.
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
NMCDC Copy of Living Atlas map. Source: https://www.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8fIllustration by Brian BrenemanThis layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises physician-level entries from the 1906 American Medical Directory, the first in a series of semi-annual directories of all practicing physicians published by the American Medical Association [1]. Physicians are consistently listed by city, county, and state. Most records also include details about the place and date of medical training. From 1906-1940, Directories also identified the race of black physicians [2].This dataset comprises physician entries for a subset of US states and the District of Columbia, including all of the South and several adjacent states (Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia). Records were extracted via manual double-entry by professional data management company [3], and place names were matched to latitude/longitude coordinates. The main source for geolocating physician entries was the US Census. Historical Census records were sourced from IPUMS National Historical Geographic Information System [4]. Additionally, a public database of historical US Post Office locations was used to match locations that could not be found using Census records [5]. Fuzzy matching algorithms were also used to match misspelled place or county names [6].The source of geocoding match is described in the “match.source” field (Type of spatial match (census_YEAR = match to NHGIS census place-county-state for given year; census_fuzzy_YEAR = matched to NHGIS place-county-state with fuzzy matching algorithm; dc = matched to centroid for Washington, DC; post_places = place-county-state matched to Blevins & Helbock's post office dataset; post_fuzzy = matched to post office dataset with fuzzy matching algorithm; post_simp = place/state matched to post office dataset; post_confimed_missing = post office dataset confirms place and county, but could not find coordinates; osm = matched using Open Street Map geocoder; hand-match = matched by research assistants reviewing web archival sources; unmatched/hand_match_missing = place coordinates could not be found). For records where place names could not be matched, but county names could, coordinates for county centroids were used. Overall, 40,964 records were matched to places (match.type=place_point) and 931 to county centroids ( match.type=county_centroid); 76 records could not be matched (match.type=NA).Most records include information about the physician’s medical training, including the year of graduation and a code linking to a school. A key to these codes is given on Directory pages 26-27, and at the beginning of each state’s section [1]. The OSM geocoder was used to assign coordinates to each school by its listed location. Straight-line distances between physicians’ place of training and practice were calculated using the sf package in R [7], and are given in the “school.dist.km” field. Additionally, the Directory identified a handful of schools that were “fraudulent” (school.fraudulent=1), and institutions set up to train black physicians (school.black=1).AMA identified black physicians in the directory with the signifier “(col.)” following the physician’s name (race.black=1). Additionally, a number of physicians attended schools identified by AMA as serving black students, but were not otherwise identified as black; thus an expanded racial identifier was generated to identify black physicians (race.black.prob=1), including physicians who attended these schools and those directly identified (race.black=1).Approximately 10% of dataset entries were audited by trained research assistants, in addition to 100% of black physician entries. These audits demonstrated a high degree of accuracy between the original Directory and extracted records. Still, given the complexity of matching across multiple archival sources, it is possible that some errors remain; any identified errors will be periodically rectified in the dataset, with a log kept of these updates.For further information about this dataset, or to report errors, please contact Dr Ben Chrisinger (Benjamin.Chrisinger@tufts.edu). Future updates to this dataset, including additional states and Directory years, will be posted here: https://dataverse.harvard.edu/dataverse/amd.References:1. American Medical Association, 1906. American Medical Directory. American Medical Association, Chicago. Retrieved from: https://catalog.hathitrust.org/Record/000543547.2. Baker, Robert B., Harriet A. Washington, Ololade Olakanmi, Todd L. Savitt, Elizabeth A. Jacobs, Eddie Hoover, and Matthew K. Wynia. "African American physicians and organized medicine, 1846-1968: origins of a racial divide." JAMA 300, no. 3 (2008): 306-313. doi:10.1001/jama.300.3.306.3. GABS Research Consult Limited Company, https://www.gabsrcl.com.4. Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 17.0 [GNIS, TIGER/Line & Census Maps for US Places and Counties: 1900, 1910, 1920, 1930, 1940, 1950; 1910_cPHA: ds37]. Minneapolis, MN: IPUMS. 2022. http://doi.org/10.18128/D050.V17.05. Blevins, Cameron; Helbock, Richard W., 2021, "US Post Offices", https://doi.org/10.7910/DVN/NUKCNA, Harvard Dataverse, V1, UNF:6:8ROmiI5/4qA8jHrt62PpyA== [fileUNF]6. fedmatch: Fast, Flexible, and User-Friendly Record Linkage Methods. https://cran.r-project.org/web/packages/fedmatch/index.html7. sf: Simple Features for R. https://cran.r-project.org/web/packages/sf/index.html
The Digital Geologic-GIS Map of Black Canyon of the Gunnison River and Vicinity, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (blcg_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (blcg_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (blcg_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (blca-cure_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (blca-cure_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (blcg_geology_metadata_faq.pdf). Please read the blca-cure_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (blcg_geology_metadata.txt or blcg_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:31,680 and United States National Map Accuracy Standards features are within (horizontally) 16.1 meters or 52.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GTM projection, test set 1: Americans of African ancestry in SW USA (ASW). Projection of Americans of African ancestry in SW USA (black points) onto a GTM map trained with 10 principal components. File name: 1000G_GTM_projection_ASW.html. The file can be viewed in a web browser with internet access. (HTML 437 kb)
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443095https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443095
Abstract (en): The boundaries of five different geographic areas -- North America, South America, Europe, Africa, and Asia -- are digitally represented in this collection of data files that can be used in the production of computer maps. Each of the five areas is encoded in three distinct files: (1) coastline, islands, and lakes, (2) rivers, and (3) international boundaries. There is an additional file for North America (Part 4: North America: Internal Boundaries) delineating state lines in the United States and provincial boundaries in Canada. The data in each of the files is hierarchically structured into subordinate geographic features and ranks, which may be used for output plotting symbol definition. The mapping scale used to encode the data ranged from 1:1 million to 1:4 million. 2006-01-18 File CB8376.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. (1) There are seven variables and an unknown number of cases for each file. The number of records per case varies according to the number of latitude and longitude coordinates needed to display the particular geographic feature. (2) The codebook is provided by ICPSR as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided on the ICPSR Web site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains information on technology access by Household. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer represents the underlying data for several data visualizations on the Tempe Equity Map.Data visualized as a percent of total population in households in given census tract.Values shown of -999 represent no data for those cells.Layer includes:Key demographicsTotal Population in Households % Broadband Internet Subscription: American Indian and Alaska Native alone% Broadband Internet Subscription: Asian Alone% Broadband Internet Subscription: Black or African American alone% Broadband Internet Subscription: Native Hawaiian and Other Pacific Islander alone% Broadband Internet Subscription: White Alone% Broadband Internet Subscription: Hispanic or Latino origin% Without an internet Subscription: American Indian and Alaska Native alone% Without an internet Subscription: Asian alone% Without an internet Subscription: Native Hawaiian and Other Pacific Islander alone% Without an internet Subscription: Black or African American Alone% Without an internet Subscription: White Alone% Without an internet Subscription: Hispanic or Latino origin% No computer in household: American Indian and Alaska native alone% No computer in household: Asian alone% No computer in household: Black or African American alone% No computer in household: Native Hawaiian or Pacific Islander% No computer in household: White Alone% No computer in household: Hispanic or Latino origin Current Vintage: 2017-2021ACS Table(s): S2802 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of Census update: Dec 8, 2022Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryNational Figures: data.census.gov
http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa
Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers,
"HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."
Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. "
HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas."
These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality."
Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.
This map shows what country naturalized US citizens were born in using the Charts & Size and Predominance mapping styles. The area with the highest amount of foreign born naturalized US citizens is shown by color. Areas are: Africa, Asia, Europe, Latin America, Northern America, and Oceania.Data are available in 5-year estimates at the state, county, and tract level for the entire US.The data in this map contains the most recent American Community Survey (ACS) data from the U.S. Census Bureau. The Living Atlas layer in this map updates annually when the Census releases their new figures. To learn more, visit this FAQ, or visit the ACS website. Web Map originally owned by Summers Cleary
The Digital Geologic-GIS Map of the Black Ridge Quadrangle, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (blrg_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (blrg_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (blrg_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (blca-cure_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (blca-cure_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (blrg_geology_metadata_faq.pdf). Please read the blca-cure_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (blrg_geology_metadata.txt or blrg_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about artists. It has 1 row and is filtered where the artworks is BLACK MAP SERIES (America North Central). It features 9 columns including birth date, death date, country, and gender.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
This American Community Survey (ACS) dataset identifies race in detail by zip code tabulation areas within the United States, from 2012 through 2016. The races included in this dataset are White, Black or African American, American Indian and Alaskan Native, Asian, Native Hawaiian and other Pacific Islander, and other. The survey also looks at races alone, and two or more races combined.
This map highlights where the Black/African American populations in households have a computer, but no internet subscription in their household. The brightest oranges show where there are a higher percentage of Black/African Americans without an internet subscription. The larger symbols show where there are more Black/African Americans without internet at home. Both of these factors highlight the at-risk population with unequal opportunities. This can be seen throughout the United States at the state, county, and tract levels. Search for your area, or explore one of the bookmarks within the map to see areas with stark patterns.The data in this map contains the most recent American Community Survey (ACS) data from the U.S. Census Bureau. The Living Atlas layer in this map updates annually when the Census releases their new figures. To learn more, visit this FAQ, or visit the ACS website. Data note: For the tract geography level, the margin of error (MOE) is included in the pop-up as reference. A note from the Census about MOEs: "Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables."
This map shows the percentage of the population in the USA that classify themselves as Black/African American according to the 2010 Census. The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.Additional Census 2010 resources