100+ datasets found
  1. Population in Africa 2024, by selected country

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Africa 2024, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

  2. T

    POPULATION by Country in AFRICA/1000

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    POPULATION by Country in AFRICA/1000 [Dataset]. https://tradingeconomics.com/country-list/population?continent=africa/1000
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Jan 12, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  3. Countries with the highest population density in Africa 2023

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population density in Africa 2023 [Dataset]. https://www.statista.com/statistics/1218003/population-density-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    Mauritius had the highest population density level in Africa as of 2023, with nearly 630 inhabitants per square kilometer. The country has also one of the smallest territories on the continent, which contributes to the high density. As a matter of fact, the majority of African countries with the largest concentration of people per square kilometer have the smallest geographical area as well. The exception is Nigeria, which ranks among the largest territorial countries in Africa and is very densely populated at the same time. After all, Nigeria has also the largest population on the continent.

  4. Countries with the largest population growth rate in Africa 2020-2025

    • statista.com
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the largest population growth rate in Africa 2020-2025 [Dataset]. https://www.statista.com/statistics/1215542/forecast-of-population-growth-in-africa-by-country/
    Explore at:
    Dataset updated
    Jan 31, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    The population in Africa was forecast to expand annually by an average of 2.37 percent between 2020 and 2025. Over 20 countries might grow above this rate, with Niger leading by an annual population change of 3.7 percent in the mentioned period. Angola was expected to follow, with an average population growth of 3.15 percent annually. Overall, Africa has recorded a faster population growth compared to other world regions. The continent's population almost doubled in the last 25 years.

  5. Forecast of most populated African countries 2050

    • statista.com
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Forecast of most populated African countries 2050 [Dataset]. https://www.statista.com/statistics/1218419/forecast-of-most-populated-countries-in-africa/
    Explore at:
    Dataset updated
    Jan 31, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    The population in Africa is expected to grow by 90 percent by 2050. Among the countries forecast to be the most populated in the continent, Nigeria leads, with an estimated population of over 401 million people. Currently, the nation has already the largest number of inhabitants in Africa. The highest population growth is expected to be measured in Angola, by 143.3 percent between 2019 and 2050. The number of inhabitants in the country is forecast to jump from 31.8 million to 77.4 million in the mentioned period.

  6. Population growth rate in Africa 2023, by country

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population growth rate in Africa 2023, by country [Dataset]. https://www.statista.com/statistics/1227666/population-growth-rate-in-africa-by-country/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    All the African countries registered a positive population growth in 2023, except for Seychelles and Mauritius. Niger had the highest population growth rate at nearly 3.7 percent compared to the previous year. The Democratic Republic of Congo, Chad, Mali, Somalia, and Angola followed, recording over three percent growth each. The African population has been increasing considerably in the last decades and is expected to nearly double by 2050. This is due to several factors, including the rising life expectancy and the high fertility rates registered on the continent.

  7. Central African Republic: High Resolution Population Density Maps +...

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    • +1more
    json, zip
    Updated Oct 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Central African Republic: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://data.amerigeoss.org/tr/dataset/highresolutionpopulationdensitymaps-caf
    Explore at:
    zip(12625355), zip(24560281), json(5693935), zip(12646690), zip(12633195), zip(24563018), zip(24540485), zip(12631650), zip(12616928), zip(12598326), zip(24557931), zip(24560032), zip(12620827), zip(24545166), zip(24557472)Available download formats
    Dataset updated
    Oct 25, 2022
    Dataset provided by
    United Nationshttp://un.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Central African Republic
    Description

    The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in the Central African Republic: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).

    There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.

  8. Median age in Africa 2023, by country

    • statista.com
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Median age in Africa 2023, by country [Dataset]. https://www.statista.com/statistics/1121264/median-age-in-africa-by-county/
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    Africa has the youngest population in the world. Among the 35 countries with the lowest median age worldwide, only three fall outside the continent. In 2023, the median age in Niger was 15.1 years, the youngest country. This means that at this age point, half of the population was younger and half older. A young population reflects several demographic characteristics of a country. For instance, together with a high population growth, life expectancy in Western Africa is low: this reached 57 years for men and 59 for women. Overall, Africa has the lowest life expectancy in the world.

    Africa’s population is still growing Africa’s population growth can be linked to a high fertility rate along with a drop in death rates. Despite the fertility rate on the continent, following a constant declining trend, it remains far higher compared to all other regions worldwide. It was forecast to reach 4.12 children per woman, compared to a worldwide average of 2.31 children per woman in 2024. Furthermore, the crude death rate in Africa overall dropped, only increasing slightly during the coronavirus (COVID-19) pandemic. The largest populations on the continent Nigeria, Ethiopia, Egypt, and the Democratic Republic of Congo are the most populous African countries. In 2023, people living in Nigeria amounted to around 224 million, while the number for the three other countries exceeded 100 million each. Of those, the Democratic Republic of Congo sustained the fourth-highest fertility rate in Africa. Nigeria and Ethiopia also had high rates, with 5.24 and 4.16 births per woman, respectively. Although such a high fertility rate is expected to slow down, it will still impact the population structure, growing younger nations.

  9. Continent of Africa: High Resolution Population Density Maps

    • data.amerigeoss.org
    • kenya.lsc-hubs.org
    • +2more
    geotiff
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2024). Continent of Africa: High Resolution Population Density Maps [Dataset]. https://data.amerigeoss.org/dataset/dbd7b22d-7426-4eb0-b3c4-faa29a87f44b
    Explore at:
    geotiff(196688306)Available download formats
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    United Nationshttp://un.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    This zip file contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country.

    Notes:

    • The country-by-country files that were previously hosted here have been moved into separate datasets. You can find all of them here.
    • South Sudan, Sudan, Somalia and Ethiopia are intentionally omitted from this dataset. However, a country-level dataset for Ethiopia can be found here.
    • These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe.
  10. M

    Africa Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Africa Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/AFR/africa/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Chart and table of Africa population from 1950 to 2025. United Nations projections are also included through the year 2100.

  11. w

    Trends and Socioeconomic Gradients in Adult Mortality Around the Developing...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damien de Walque and Deon Filmer (2021). Trends and Socioeconomic Gradients in Adult Mortality Around the Developing World 1991-2009 - Benin, Burkina Faso, Bolivia, Brazil, Cameroon, Congo, Dem. Rep., Dominican Republic, Ethiopia, Gabon, Guinea, Guatemala, Haiti, Indonesia, Jorda... [Dataset]. https://microdata.worldbank.org/index.php/catalog/727
    Explore at:
    Dataset updated
    Apr 26, 2021
    Dataset authored and provided by
    Damien de Walque and Deon Filmer
    Time period covered
    1991 - 2009
    Area covered
    Guatemala, Cameroon, Haiti, Democratic Republic of the Congo, Benin, Burkina Faso, Brazil, Dominican Republic, Ethiopia
    Description

    Abstract

    The authors combine data from 84 Demographic and Health Surveys from 46 countries to analyze trends and socioeconomic differences in adult mortality, calculating mortality based on the sibling mortality reports collected from female respondents aged 15-49.

    The analysis yields four main findings. First, adult mortality is different from child mortality: while under-5 mortality shows a definite improving trend over time, adult mortality does not, especially in Sub-Saharan Africa. The second main finding is the increase in adult mortality in Sub-Saharan African countries. The increase is dramatic among those most affected by the HIV/AIDS pandemic. Mortality rates in the highest HIV-prevalence countries of southern Africa exceed those in countries that experienced episodes of civil war. Third, even in Sub-Saharan countries where HIV-prevalence is not as high, mortality rates appear to be at best stagnating, and even increasing in several cases. Finally, the main socioeconomic dimension along which mortality appears to differ in the aggregate is gender. Adult mortality rates in Sub-Saharan Africa have risen substantially higher for men than for women?especially so in the high HIV-prevalence countries. On the whole, the data do not show large gaps by urban/rural residence or by school attainment.

    This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org.

    Geographic coverage

    We derive estimates of adult mortality from an analysis of Demographic and Health Survey (DHS) data from 46 countries, 33 of which are from Sub-Saharan Africa and 13 of which are from countries in other regions (Annex Table). Several of the countries have been surveyed more than once and we base our estimates on the total of 84 surveys that have been carried out (59 in Sub-Saharan Africa, 25 elsewhere).

    The countries covered by DHS in Sub-Saharan Africa represent almost 90 percent of the region's population. Outside of Sub-Saharan Africa the DHS surveys we use cover a far smaller share of the population-even if this is restricted to countries whose GDP per capita never exceeds $10,000: overall about 14 percent of the population is covered by these countries, although this increases to 29 percent if China and India are excluded (countries for which we cannot calculate adult mortality using the DHS). It is therefore important to keep in mind that the sample of non-Sub-Saharan African countries we have cannot be thought of as "representative" of the rest of the world, or even the rest of the developing world.

    Analysis unit

    Country

    Kind of data

    Sample survey data [ssd]

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    In the course of carrying out this study, the authors created two databases of adult mortality estimates based on the original DHS datasets, both of which are publicly available for analysts who wish to carry out their own analysis of the data.

    The naming conventions for the adult mortality-related are as follows. Variables are named:

    GGG_MC_AAAA

    GGG refers to the population subgroup. The values it can take, and the corresponding definitions are in the following table:

    All - All Fem - Female Mal - Male Rur - Rural Urb - Urban Rurm - Rural/Male Urbm - Urban/Male Rurf - Rural/Female Urbf - Urban/Female Noed - No education Pri - Some or completed primary only Sec - At least some secondary education Noedm - No education/Male Prim - Some or completed primary only/Male Secm - At least some secondary education/Male Noedf - No education/Female Prif - Some or completed primary only/Female Secf - At least some secondary education/Female Rch - Rural as child Uch - Urban as child Rchm - Rural as child/Male Uchm - Urban as child/Male Rchf - Rural as child/Female Uchf - Urban as child/Female Edltp - Less than primary schooling Edpom - Primary or more schooling Edltpm - Less than primary schooling/Male Edpomm - Primary or more schooling/Male Edltpf - Less than primary schooling/Female Edpomf - Primary or more schooling/Female Edltpu - Less than primary schooling/Urban Edpomu - Primary or more schooling/Urban Edltpr - Less than primary schooling/Rural Edpomr - Primary or more schooling/Rural Edltpmu - Less than primary schooling/Male/Urban Edpommu - Primary or more schooling/Male/Urban Edltpmr - Less than primary schooling/Male/Rural Edpommr - Primary or more schooling/Male/Rural Edltpfu - Less than primary schooling/Female/Urban Edpomfu - Primary or more schooling/Female/Urban Edltpfr - Less than primary schooling/Female/Rural Edpomfr - Primary or more schooling/Female/Rural

    M refers to whether the variable is the number of observations used to calculate the estimate (in which case M takes on the value "n") or whether it is a mortality estimate (in which case M takes on the value "m").

    C refers to whether the variable is for the unadjusted mortality rate calculation (in which case C takes on the value "u") or whether it adjusts for the number of surviving female siblings (in which case C takes on the value "a").

    AAAA refers to the age group that the mortality estimate is calculated for. It takes on the values: 1554 - Ages 15-54 1524 - Ages 15-24 2534 - Ages 25-34 3544 - Ages 35-44 4554 - Ages 45-54

    Other variables that are in the databases are:

    period - Period for which mortality rate is calculated (takes on the values 1975-79, 1980-84 … 2000-04) svycountry - Name of country for DHS countries ccode3 - Country code u5mr - Under-5 mortality (from World Development Indicators) cname - Country name gdppc - GDP per capita (constant 2000 US$) (from World Development Indicators) gdppcppp - GDP per capita PPP (constant 2005 intl $) (from World Development Indicators) pop - Population (from World Development Indicators) hivprev2001 - HIV prevalence in 2001 (from UNAIDS 2010) region - Region

  12. C

    Central African Republic CF: Population in Largest City

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central African Republic CF: Population in Largest City [Dataset]. https://www.ceicdata.com/en/central-african-republic/population-and-urbanization-statistics/cf-population-in-largest-city
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Central African Republic
    Variables measured
    Population
    Description

    Central African Republic CF: Population in Largest City data was reported at 958,335.000 Person in 2023. This records an increase from the previous number of 933,176.000 Person for 2022. Central African Republic CF: Population in Largest City data is updated yearly, averaging 482,169.500 Person from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 958,335.000 Person in 2023 and a record low of 94,350.000 Person in 1960. Central African Republic CF: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Central African Republic – Table CF.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.;United Nations, World Urbanization Prospects.;;

  13. d

    West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Dec 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2023). West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 [Dataset]. https://catalog.data.gov/dataset/west-africa-coastal-vulnerability-mapping-population-projections-2030-and-2050
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    SEDAC
    Area covered
    West Africa, Africa
    Description

    The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.

  14. H

    South Africa - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2024). South Africa - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-south-africa
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    South Africa
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  15. Migration Household Survey 2009 - South Africa

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jun 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Sciences Research Council (HSRC) (2019). Migration Household Survey 2009 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/96
    Explore at:
    Dataset updated
    Jun 3, 2019
    Dataset provided by
    Human Sciences Research Councilhttps://hsrc.ac.za/
    Authors
    Human Sciences Research Council (HSRC)
    Time period covered
    2009
    Area covered
    South Africa
    Description

    Abstract

    The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.

    Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.

    Geographic coverage

    Two provinces: Gauteng and Limpopo

    Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.

    Analysis unit

    • Household
    • Individual

    Universe

    The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.

    In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).

    A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.

    In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).

    How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.

    Based on all the above principles the set of weights or scores was developed.

    In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.

    From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.

    Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.

    The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.

    The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead

  16. Population density in Africa 2000-2027

    • statista.com
    Updated Mar 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in Africa 2000-2027 [Dataset]. https://www.statista.com/statistics/1225875/population-density-in-africa/
    Explore at:
    Dataset updated
    Mar 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    In 2022, the population density in Africa was 48.3 inhabitants per square kilometer. From 2000 onwards, the density of the population on the continent has increased annually. Moreover, the average number of people living within a square kilometer was expected to increase to around 54 by 2027. Mauritius, Rwanda, and Burundi were the African countries with the highest population density as of 2023.

  17. k

    Future of African Remittances: National Surveys 2010 - Kenya

    • statistics.knbs.or.ke
    • catalog.ihsn.org
    • +3more
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward Al-Hussainy (2022). Future of African Remittances: National Surveys 2010 - Kenya [Dataset]. https://statistics.knbs.or.ke/nada/index.php/catalog/46
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    Edward Al-Hussainy
    Time period covered
    2010
    Area covered
    Kenya
    Description

    Abstract

    The Future of African Remittances (FAR) team conducted research on remittance flows to measure and understand the remittance process in sub-Saharan Africa. This ambitious and important research is initially focused on three countries in East Africa - Ethiopia, Kenya and Uganda.

    In order to glean insights into the remittance process in the three designated countries, the World Bank designed a two-phase survey process. Phase 1 involved conducting a national survey in each of the three countries. The purpose of the first phase of research was to collect a large representative sample of the adult population in each country. The national surveys provide important baseline data about international remittance flows including: an estimate of the percent of the total adult population that regularly receives remittances, the average amount of each remittance received, most common methods of receipt and top sending countries. Additionally, through the analysis of the national survey results, World Bank was able to identify areas of each country that have high concentrations of international remittance recipients. This important piece of information guided Phase 2 of the research - surveys of remittance receivers in each country. Whereas the national surveys aimed to collect general data about the remittance process, the surveys of remittance recipients allowed for the collection of more detailed data about the remittance process itself, how remittances are used, the relationship between sender and receiver, and interest in various financial products.

    The results of this research will not only provide estimates of total annual amounts of remittances for each country, but also will tell us the percentage of the population in each country that is involved in the international remittance process. Furthermore, it will offer insights as to the degree to which Ethiopians, Kenyans and Ugandans depend on international remittances and how the money is used, saved and/or invested. Results will also measure interest in financial products that, if utilized, can significantly impact the financial well-being of the population and the overall economic stability of each country.

    Geographic coverage

    National Coverage

    Analysis unit

    Households Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    General:

    The total samples were compiled utilizing multi-stage stratified random sampling through respondent selection. Multi-stage random sampling ensured that a random sample of adults was collected in each country. First, after stratifying the population of each country by region and population density, sampling points (SPs) were determined. SPs were then randomly selected within each stratum. At each SP, respondents were randomly selected to participate in the survey.

    Phase 1:

    The first phase consisted of national surveys of the adult population of each country. The three survey samples were designed to be representative of the adult populations of these three countries. World Bank coordinated and oversaw all aspects of the sampling and interviewing process. A team of local field experts was hired in each country to conduct the actual interviews. All interviewers were professionally trained and supervised by research personnel. In this phase of the research, a total of 2022 Kenyan adults were interviewed.

    Phase 2:

    Once the national surveys were completed, the results were analyzed to determine the areas of concentration of the remittance recipient population, after which the second phase of the project was conducted. This phase of the project included a targeted survey of the remittance recipient population of each of the three East African countries. Sampling Points were established based on the analysis of the national survey data and the identification of areas within each country that showed the highest concentrations of remittances received from relatives abroad in proportion to the sample size of all areas surveyed. Once again, local field experts were hired in each country to conduct the interviews, training and supervision of field operations. Languages of interviews were the same as those employed in Phase 1 and, again, all interviews were conducted in person using the PAPI method. A total of 400 interviews with regular international remittance recipients were completed in each country during August and September of 2010. The margin of error for all three surveys is approximately ±5 percentage points and the 95 percent level of confidence.

    Detail:

    The total sample was compiled utilizing multi-stage stratified random sampling through respondent selection. This sampling method enabled B&A to ensure that a representative random sample of Kenyan adults was collected. There are three stages to this type of sampling methodology. First, after stratifying the Kenyan population by region and population density, sampling points (SPs) were determined. SPs were then randomly selected within each stratum. In the second stage, using the random route method, dwellings were selected within each SP. The random route method involves selecting an address in each SP at random as a starting point. Each interviewer was given instructions to identify additional dwellings by taking alternate left and right turns and stopping at every Nth dwelling. The third and final stage involved selecting actual participants - for each selected dwelling, individual respondents were chosen using a Kish grid. In a Kish grid, prior to beginning the interview, the interviewer first asks for the ages and genders of every household member (only persons aged 18 or older were eligible for selection). The individual to be interviewed was then chosen based on a random number in the grid.

    Once the national survey was completed, B&A analyzed the results to determine the areas of concentration of the remittance recipient population, after which the second phase of the project was conducted. This phase included a targeted survey of the remittance recipient population in Kenya. Sampling Points were established based on B&A's analysis of the national survey data and the identification of areas of the country that showed concentrations of international remittance receivers in proportion to the sample size of all areas surveyed. Once again, local field experts were hired to conduct the interviews and B&A conducted all training and supervision of field operations. Interviews were conducted in English or Swahili depending on respondent preference and all interviews were conducted in person using the PAPI method. A total of 401 interviews with regular international remittance recipients were conducted in Kenya during August and September of 2010. The margin of error for the surveys is approximately ±5 percentage points and the 95 percent level of confidence.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Phase 1:

    This survey consisted of 12 questions that were aimed at helping to identify some of the basic characteristics of the remittance recipient population in each country. Some of the variables included in this survey were - location, age, gender, amount of money received, method of receipt, origin of remittance, etc.

    Phase 2:

    The survey instrument for Phase 2 consisted of approximately 35 questions and included a number of variables aimed at obtaining greater detail about the remittance receiving process including costs, amounts received, information about the sender and the relationship between sender and receiver. Additionally, the survey measured interest in various financial products.

    Response rate

    Every effort was made to achieve the maximum possible coverage, taking cost, timing and other factors into account. A coverage rate of 85% was achieved in the national survey and the 15% of the country that was not covered consisted of areas that were either very remote (and difficult to travel to) or that had extremely small populations.

    Sampling error estimates

    The margin of error is approximately ±5 percentage points and the 95 percent level of confidence.

  18. c

    Are we there yet? Poverty in sub-Saharan Africa

    • datacatalogue.cessda.eu
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nandy, S (2025). Are we there yet? Poverty in sub-Saharan Africa [Dataset]. http://doi.org/10.5255/UKDA-SN-852557
    Explore at:
    Dataset updated
    Mar 23, 2025
    Dataset provided by
    Cardiff University
    Authors
    Nandy, S
    Area covered
    Africa
    Variables measured
    Household, Geographic Unit, Individual
    Measurement technique
    Data are collected in nationally representative population-based surveys with large sample sizes (usually between 5,000 and 30,000 households). In all households, women age 15-49 are eligible to participate; in many surveys men age 15-54(59) from a sub-sample are also eligible to participate. There are three core questionnaires in DHS surveys: A Household Questionnaire, a Women’s Questionnaire, and a Men's questionnaire. There are also several standardized modules for countries with interest in those topics. - See more at: www.dhsprogram.com/data/data-collection.cfm#sthash.SPEitvC5.dpuf
    Description

    This data collection consists of aggregate population data by age and sex (for post-stratification population weighting) derived from a UN Population Division file (referred to in the report attached, under the section on post-stratification population weighting) as well as a detailed report which sets out how indicators of deprivation of basic human needs for water, sanitation, shelter, information, education, health and food were developed and used to form summary indicators of severe deprivation and absolute poverty. The report also provides information on how post-stratification population weights were derived to modify the sample weights to make samples more representative of the population as a whole.

    The data used for this project are from the Demographic and Health Surveys and UNICEF's Multiple Indicator Cluster Surveys (see Related Resources).

    This project will use high quality, nationally representative, individual level data from over 140 household surveys conducted between 1990 and 2015 in 40 sub-Saharan African countries, to produce national, sub-regional and regional estimates of absolute poverty for the years 1995, 2000, 2005, 2010 and 2015.

    Age appropriate and gender relevant indicators of severe deprivation of basic human needs will be operationalised, and an internationally recognised peer reviewed methodology (the ‘Bristol Approach’) used to show how poverty is patterned across Africa, and how it has changed over 20 years. It will show if rural populations have been left behind as urban areas develop, or if with increased rural to urban migration, poverty in Africa has evolved into a primarily urban problem. It will address important issues about gender and geographic disparities in poverty, which until recently have only been assessed in monetary terms.

    The application of the Bristol Approach, to reflect non-monetary dimensions of poverty, will reveal a more meaningful picture of poverty in Africa and how it has changed over time.

    Links will be developed with researchers across Africa, including academics at the Universities of Cape Town and the Western Cape.

  19. Total population of Africa 2000-2030

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population of Africa 2000-2030 [Dataset]. https://www.statista.com/statistics/1224168/total-population-of-africa/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    As of 2023, the total population of Africa was over 1.48 billion. The number of inhabitants on the continent increased annually from 2000 onwards. In comparison, the total population was around 831 million in 2000. According to forecasts, Africa will experience impressive population growth in the coming years and would nearly reach the Asian population by 2100. Over 200 million people in Nigeria Nigeria is the most populous country in Africa. In 2023, the country’s population exceeded 223 million people. Ethiopia followed with a population of around 127 million, while Egypt ranked third, accounting for approximately 113 million individuals. Other leading African countries in terms of population were the Democratic Republic of the Congo, Tanzania, South Africa, and Kenya. Additionally, Niger, the Democratic Republic of Congo, and Chad recorded the highest population growth rate on the continent in 2023, with the number of residents rising by over 3.08 percent compared to the previous year. On the other hand, the populations of Tunisia and Eswatini registered a growth rate below 0.85 percent, while for Mauritius and Seychelles, it was negative. Drivers for population growth Several factors have driven Africa’s population growth. For instance, the annual number of births on the continent has risen constantly over the years, jumping from nearly 32 million in 2000 to almost 46 million in 2023. Moreover, despite the constant decline in the number of births per woman, the continent’s fertility rate has remained considerably above the global average. Each woman in Africa had an average of over four children throughout her reproductive years as of 2021, compared to a world rate of around two births per woman. At the same time, improved health and living conditions contributed to decreasing mortality rate and increasing life expectancy in recent years, driving population growth.

  20. f

    S1 File -

    • plos.figshare.com
    txt
    Updated Jun 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukhtar A. Ijaiya; Adebanjo Olowu; Habibat A. Oguntade; Seun Anjorin; Olalekan A. Uthman (2023). S1 File - [Dataset]. http://doi.org/10.1371/journal.pgph.0000544.s002
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 22, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Mukhtar A. Ijaiya; Adebanjo Olowu; Habibat A. Oguntade; Seun Anjorin; Olalekan A. Uthman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    HIV literature has grown exponentially since it was named the virus that causes acquired immunodeficiency syndrome (AIDS). Bibliometric analysis is a practical approach for quantitatively and qualitatively assessing scientific research. This work aims to describe HIV research output in Africa by country from 1986 until 2020. We conducted a search of the PubMed database in June 2021 for a 35-year period spanning 1986 to 2020. We comparatively weighed for countries’ populations, gross domestic product (GDP), and the number of persons living with HIV (PLHIV) by calculating the ratio of the number of publications from each country. We used Poisson regression models to explore the trends in countries’ HIV research output over the study period. The Pearson correlation analysis assessed the association between research output, population size, GDP, and the number of PLHIV.A total of 83,527 articles from African countries on HIV indexed in PubMed were included for analysis. Republic of South Africa, Uganda, Kenya, and Nigeria account for 54% of the total indexed publications with 33.2% (26,907); 8.4% (7,045); 7.3% (6,118); and 5.1% (4,254), respectively. Africa’s proportion of the world’s total HIV publications increased from 5.1% in 1986 to 31.3% in 2020. There was a strong positive and statistically significant correlation between the total indexed HIV publications and countries’ GDP (r = 0.59, P

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Population in Africa 2024, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
Organization logo

Population in Africa 2024, by selected country

Explore at:
40 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 18, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Africa
Description

Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

Search
Clear search
Close search
Google apps
Main menu