City Profile Census Data
This dataset falls under the category Planning & Policy Planning.
It contains the following data: Information on the population
This dataset was scouted on 2022-02-24 as part of a data sourcing project conducted by TUMI. License information might be outdated: Check original source for current licensing.
The data can be accessed using the following URL / API Endpoint: https://smartcities.data.gov.in/resources/city-profile-census-data
The National Family Health Survey 2019-21 (NFHS-5), the fifth in the NFHS series, provides information on population, health, and nutrition for India, each state/union territory (UT), and for 707 districts.
The primary objective of the 2019-21 round of National Family Health Surveys is to provide essential data on health and family welfare, as well as data on emerging issues in these areas, such as levels of fertility, infant and child mortality, maternal and child health, and other health and family welfare indicators by background characteristics at the national and state levels. Similar to NFHS-4, NFHS-5 also provides information on several emerging issues including perinatal mortality, high-risk sexual behaviour, safe injections, tuberculosis, noncommunicable diseases, and the use of emergency contraception.
The information collected through NFHS-5 is intended to assist policymakers and programme managers in setting benchmarks and examining progress over time in India’s health sector. Besides providing evidence on the effectiveness of ongoing programmes, NFHS-5 data will help to identify the need for new programmes in specific health areas.
The clinical, anthropometric, and biochemical (CAB) component of NFHS-5 is designed to provide vital estimates of the prevalence of malnutrition, anaemia, hypertension, high blood glucose levels, and waist and hip circumference, Vitamin D3, HbA1c, and malaria parasites through a series of biomarker tests and measurements.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-54, and all children aged 0-5 resident in the household.
Sample survey data [ssd]
A uniform sample design, which is representative at the national, state/union territory, and district level, was adopted in each round of the survey. Each district is stratified into urban and rural areas. Each rural stratum is sub-stratified into smaller substrata which are created considering the village population and the percentage of the population belonging to scheduled castes and scheduled tribes (SC/ST). Within each explicit rural sampling stratum, a sample of villages was selected as Primary Sampling Units (PSUs); before the PSU selection, PSUs were sorted according to the literacy rate of women age 6+ years. Within each urban sampling stratum, a sample of Census Enumeration Blocks (CEBs) was selected as PSUs. Before the PSU selection, PSUs were sorted according to the percentage of SC/ST population. In the second stage of selection, a fixed number of 22 households per cluster was selected with an equal probability systematic selection from a newly created list of households in the selected PSUs. The list of households was created as a result of the mapping and household listing operation conducted in each selected PSU before the household selection in the second stage. In all, 30,456 Primary Sampling Units (PSUs) were selected across the country in NFHS-5 drawn from 707 districts as on March 31st 2017, of which fieldwork was completed in 30,198 PSUs.
For further details on sample design, see Section 1.2 of the final report.
Computer Assisted Personal Interview [capi]
Four survey schedules/questionnaires: Household, Woman, Man, and Biomarker were canvassed in 18 local languages using Computer Assisted Personal Interviewing (CAPI).
Electronic data collected in the 2019-21 National Family Health Survey were received on a daily basis via the SyncCloud system at the International Institute for Population Sciences, where the data were stored on a password-protected computer. Secondary editing of the data, which required resolution of computer-identified inconsistencies and coding of open-ended questions, was conducted in the field by the Field Agencies and at the Field Agencies central office, and IIPS checked the secondary edits before the dataset was finalized.
Field-check tables were produced by IIPS and the Field Agencies on a regular basis to identify certain types of errors that might have occurred in eliciting information and recording question responses. Information from the field-check tables on the performance of each fieldwork team and individual investigator was promptly shared with the Field Agencies during the fieldwork so that the performance of the teams could be improved, if required.
A total of 664,972 households were selected for the sample, of which 653,144 were occupied. Among the occupied households, 636,699 were successfully interviewed, for a response rate of 98 percent.
In the interviewed households, 747,176 eligible women age 15-49 were identified for individual women’s interviews. Interviews were completed with 724,115 women, for a response rate of 97 percent. In all, there were 111,179 eligible men age 15-54 in households selected for the state module. Interviews were completed with 101,839 men, for a response rate of 92 percent.
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
This statistic depicts the age distribution of India from 2013 to 2023. In 2023, about 25.06 percent of the Indian population fell into the 0-14 year category, 68.02 percent into the 15-64 age group and 6.92 percent were over 65 years of age. Age distribution in India India is one of the largest countries in the world and its population is constantly increasing. India’s society is categorized into a hierarchically organized caste system, encompassing certain rights and values for each caste. Indians are born into a caste, and those belonging to a lower echelon often face discrimination and hardship. The median age (which means that one half of the population is younger and the other one is older) of India’s population has been increasing constantly after a slump in the 1970s, and is expected to increase further over the next few years. However, in international comparison, it is fairly low; in other countries the average inhabitant is about 20 years older. But India seems to be on the rise, not only is it a member of the BRIC states – an association of emerging economies, the other members being Brazil, Russia and China –, life expectancy of Indians has also increased significantly over the past decade, which is an indicator of access to better health care and nutrition. Gender equality is still non-existant in India, even though most Indians believe that the quality of life is about equal for men and women in their country. India is patriarchal and women still often face forced marriages, domestic violence, dowry killings or rape. As of late, India has come to be considered one of the least safe places for women worldwide. Additionally, infanticide and selective abortion of female fetuses attribute to the inequality of women in India. It is believed that this has led to the fact that the vast majority of Indian children aged 0 to 6 years are male.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Number of Migrants: Jammu and Kashmir data was reported at 2,809,629.000 Person in 03-01-2011. This records an increase from the previous number of 1,805,757.000 Person for 03-01-2001. Census: Number of Migrants: Jammu and Kashmir data is updated decadal, averaging 2,307,693.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 2,809,629.000 Person in 03-01-2011 and a record low of 1,805,757.000 Person in 03-01-2001. Census: Number of Migrants: Jammu and Kashmir data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAG001: Census of India: Migration: Number of Migrants: by States.
Introduction
The Annual Survey of Industries (ASI) is one of the large-scale sample survey conducted by Field Operation Division of National Sample Survey Office for more than three decades with the objective of collecting comprehensive information related to registered factories on annual basis. ASI is the primary source of data for facilitating systematic study of the structure of industries, analysis of various factors influencing industries in the country and creating a database for formulation of industrial policy.
The main objectives of the Annual Survey of Industries are briefly as follows:
(a) Estimation of the contribution of manufacturing industries as a whole and of each unit to national income.
(b) Systematic study of the structure of industry as a whole and of each type of industry and each unit.
(c) Casual analysis of the various factors influencing industry in the country: and
(d) Provision of comprehensive, factual and systematic basis for the formulation of policy.
The Annual Survey of Industries (ASI) is the principal source of industrial statistics in India. It provides statistical information to assess changes in the growth, composition and structure of organised manufacturing sector comprising activities related to manufacturing processes, repair services, gas and water supply and cold storage. The Survey is conducted annually under the statutory provisions of the Collection of Statistics Act 1953, and the Rules framed there-under in 1959, except in the State of Jammu & Kashmir where it is conducted under the State Collection of Statistics Act, 1961 and the rules framed there-under in 1964.
The ASI is the principal source of industrial statistics in India and extends to the entire country except Arunachal Pradesh, Mizoram & Sikkim and the Union Territory of Lakshadweep. It covers all factories registered under Sections 2m(i) and 2m(ii) of the Factories Act, 1948.
The primary unit of enumeration in the survey is a factory in the case of manufacturing industries, a workshop in the case of repair services, an undertaking or a licensee in the case of electricity, gas & water supply undertakings and an establishment in the case of bidi & cigar industries. The owner of two or more establishments located in the same State and pertaining to the same industry group and belonging to census scheme is, however, permitted to furnish a single consolidated return. Such consolidated returns are common feature in the case of bidi and cigar establishments, electricity and certain public sector undertakings.
The survey cover factories registered under the Factory Act 1948.
Establishments under the control of the Defence Ministry,oil storage and distribution units, restaurants and cafes and technical training institutions not producing anything for sale or exchange were kept outside the coverage of the ASI.
Sample survey data [ssd]
Sampling Procedure
The sampling design followed in ASI 1998-99 is a Circular Systematic one. All the factories in the updated frame (universe) are divided into two sectors, viz., Census and Sample.
Census Sector: Census Sector is defined as follows:
a) All the complete enumeration States namely, Manipur, Meghalaya, Nagaland, Tripura and Andaman & Nicobar Islands. b) For the rest of the States/ UT's., (i) units having 200 or more workers, and (ii) all factories covered under Joint Returns.
Rest of the factories found in the frame constituted Sample sector on which sampling was done. Factories under Biri & Cigar sector were not considered uniformly under census sector. Factories under this sector were treated for inclusion in census sector as per definition above (i.e., more than 200 workers and/or joint returns). After identifying Census sector factories, rest of the factories were arranged in ascending order of States, NIC-98 (4 digit), number of workers and district and properly numbered. The Sampling was taken within each stratum (State X Sector X 4-digit NIC) with a minimum of 8 samples in each stratum in the form of 2 sub-samples. For the first time, all electricity undertakings other than captive units, Government Departmental undertakings such as Railway Workshops, P & T workshops etc. were kept out of coverage of ASI.
There was no deviation from sample design in ASI 1998-99.
Face-to-face [f2f]
Pre-data entry scrutiny was carried out on the schedules for inter and intra block consistency checks. Such editing was mostly manual, although some editing was automatic. But, for major inconsistencies, the schedules were referred back to NSSO (FOD) for clarifications/modifications.
The final unit level data of ASI 98-99 is available now in electronic media. This document describes additional information regarding ASI 98-99 data from the point of data processing. Users of ASI 98-99 data are requested to read this document carefully before they attempt to process the unit level data for their own purpose. They are also requested to refer to the schedule and the instruction manual for filling up the schedule before interpreting contents of various data fields. A. Contents The CD (or any other media) should contain the following files: ASI99.TXT This file contains unit level detail data of ASI 98-99 as per structure given in ANNEXURE- Total no. of records: 104740 XASI98.TXT (Metadata created from this .TXT file) This file contains unit level detail data of ASI 97-98 for those factories which were found not responding during the survey of ASI 98-99. The record layout is already available with the Computer Centre, New Delhi. Record Length: 135 Total no. of records: 6974 README.DOC This file.
B. Tabulation procedure The tabulation procedure by CSO(ISW) includes both the ASI 98-99 data and the extracted data from ASI 97-98 for all tabulation purpose. To make results comparable, users are requested to follow the same procedure. For calculation of various parameters, users are requested to refer instruction manual/report for the respective years. Please note that a separate inflation factor (Multiplier) is available for each factory against records belonging to Block-A ,pos:38-46 (Please refer ANNEXURE-I) for ASI 98-99 data. Since the data extracted from ASI 97-98 belong to Census Sector no such inflation (Multiplier) factor is required. Industry code as per Return(5-digit level of NIC-98) Industry code as reported by the factories in Block-A, Item 1 has been further codified because of the following two policies practiced at CSO(ISW). Tabulation policy: As per the latest tabulation policy, it has been decided to publish detail information regarding factories belonging to 01 to 37 of industry codes( 2-digit, NIC-98). Factories belonging to other industry groups would be clubbed together and to be published under 'Others'. Accordingly all industry codes other than 01 to 37 were replaced with a 5-digited code 'YYYYY'. Merging and suppression of identity: To suppress the identity of factories, less frequent industry codes were modified accordingly. Example: if a reported industry code is found as 2930Z, this is to be treated as 'other merged industry code under industry group 2930 (4-digit NIC'98)'. Similarly if the reported industry code is found as 293ZZ, the same as to be treated as 'other merged industry code under industry group 293 (3-digit NIC'98)' and so on.
FIXED ASSETS (Block-C) Columnwise relationship (please refer schedule) may not hold true for data in this block. This is because of the lack of information available from the factory owners. E. EMPLOYMENT AND LABOUR COST (Block-E) It has been found that a larger number of factory owners were unable to provide detailed break-up of information regarding provident fund (Block-E, Col.7). Instead they provide total provident fund as a whole for all employees (Block-E, Srl. No. 7, Col.7). Users are requested to use Srl.9, Col.7 for information on provident fund. The total of srl.6 to 8 for Col.7 may not tally with srl.9, col.7. F. ASICC codes in Block H, I & J Because of the proximity of various item's description, it is possible that same ASICC code may appear against multiple records in these blocks. They should not be treated as duplicates. They are clubbed together at the time of tabulation to provide information at ASICC level. G. Record Identification Key Record identification key for each factory is Despatch Serial No. (DSL, pos: 4-8) X Block code (Blk, pos: 3). Please refer ANNEXURE-I for item level identification key for each factory.
Relative Standard Error (RSE) is calculated in terms of worker, wages to worker and GVA using the formula (Pl ease refer to Estimation Procedure document in external resources). Programs developed in Visual Faxpro are used to compute the RSE of estimates.
To check for consistency and reliability of data the same are compared with the NIC-2digit level growth rate at all India Index of Production (IIP) and the growth rates obtained from the National Accounts Statistics at current and constant prices for the registered manufacturing sector.
The Annual Survey of Industries (ASI) is the principal source of industrial statistics in India. It provides statistical information to assess changes in the growth, composition and structure of organised manufacturing sector comprising activities related to manufacturing processes, repair services, gas and water supply and cold storage. Industrial sector occupies an important position in the State economy and has a pivotal role to play in the rapid and balanced economic development. The Survey is conducted annually under the statutory provisions of the Collection of Statistics Act 1953, and the Rules framed there-under in 1959, except in the State of Jammu & Kashmir where it is conducted under the State Collection of Statistics Act, 1961 and the rules framed there-under in 1964.
Coverage of the Annual Survey of Industries extends to the entire Factory Sector, comprising industrial units (called factories) registered under section 2(m)(i) and 2(m)(ii) of the Factories Act.1948, wherein a "Factory", which is the primary statistical unit of enumeration for the ASI is defined as:-"Any premises" including the precincts thereof:- (i) wherein ten or more workers are working or were working on any day of the preceding twelve months, and in any part of which a manufacturing process is being carried on with the aid of power or is ordinarily so carried on, or (ii) wherein twenty or more workers are working or were working on any day of the preceding twelve months, and in any part of which a manufacturing process is being carried on without the aid of power. In addition to section 2(m)(i) & 2(m)(ii) of the Factories Act, 1948, electricity units registered with the Central Electricity Authority and Bidi & Cigar units, registered under the Bidi & Cigar Workers (Conditions of Employment) Act,1966 are also covered in ASI.
The primary unit of enumeration in the survey is a factory in the case of manufacturing industries, a workshop in the case of repair services, an undertaking or a licensee in the case of electricity, gas & water supply undertakings and an establishment in the case of bidi & cigar industries. The owner of two or more establishments located in the same State and pertaining to the same industry group and belonging to same scheme (census or sample) is, however, permitted to furnish a single consolidated return. Such consolidated returns are common feature in the case of bidi and cigar establishments, electricity and certain public sector undertakings.
The survey cover factories registered under the Factory Act 1948. Establishments under the control of the Defence Ministry,oil storage and distribution units, restaurants and cafes and technical training institutions not producing anything for sale or exchange were kept outside the coverage of the ASI.
Sample survey data [ssd]
The sampling design followed in ASI 1989-90 is a circular systematic one. All the factories in the updated frame (universe) are divided into two sectors, viz., Census and Sample.
a) CENSUS : To keep pace with the enormous growth of the factory sector, definition of the census sector was changed from ASI 1987-88 to the units having 100 or more workers irrespective of their operation with or without power and all electrical undertakings. All industrial units belonging to the 12 less industrially developed states/ UT's like Goa, Himachal Pradesh, J & K, Chandigarh, Manipur, Meghalaya, Nagaland, Tripura, Daman & diu, Pondicherry Dadra & Nagar Haveli, and Andaman & Nicobar Islands etc.
b) The rest of of the universe was covered on sampling design adopting State X 3 digit industry group as stratum so as to cover all the units in a span of three years. In any stratum, if the number of units was less than 20, then the entire stratum was enumearted completely along with census factories. In any stratum if no. of unit is between 21 & 60, a minimum sample of size 20 was selected by Circular Systematic Sampling. For all other units a uniform sampling fraction of 1/3 was adopted.
*****Please Note: Data has already been multiplied by Multiplier factor as such multiplier is not provided in the data set ****
There was no deviation from sample design in ASI 1989-90
Face-to-face [f2f]
Annual Survey of Industries Questionnaire (in External Resources) is divided into different blocks:
BLOCK1/2/16 : RECORD TYPE 011 : IDENTIFICATION PARTICULARS (Filled by CSO and Industrial Units)
BLOCK 4 : RECORD TYPE 011 : SCHEDULE OF FIXED ASSETS
BLOCK 4A : RECORD TYPE 011 : EMPLOYMENT AND LABOUR COST
BLOCK 5 : RECORD TYPE 011 : SCHEDULE OF WORKING CAPITAL AND LOANS
BLOCK 6 : RECORD TYPE 011 : WORKING DAYS AND SHIFTS
BLOCK 7 : RECORD TYPE 011 : EMPLOYMENT
BLOCK 8 : RECORD TYPE 011 : LABOUR COST (INCLUDING FOR CONTRACT LABOUR)
BLOCK 9 : RECORD TYPE 011 : FUELS, ELECTRICITY AND WATER CONSUMED (EXCLUDING INTERMEDIATE PRODUCTS)
BLOCK 10 : RECORD TYPE 011 : OTHER EXPENDITURE
BLOCK 11 : RECORD TYPE 011 : OTHER OUTPUT/RECEIPTS
BLOCK 12 : RECORD TYPE 011 : ELECTRICITY
BLOCK 13 : RECORD TYPE 011 : MATERIALS CONSUMED
BLOCK 13 A : RECORD TYPE 011 : INPUT ITEMS (indigenous items consumed)
BLOCK 13 B : RECORD TYPE 011 : INPUT ITEMS – directly imported items only (consumed)
BLOCK 14 : RECORD TYPE 011 : PRODUCTS AND BY-PRODUCTS (manufactured by the unit)
BLOCK 14 A : RECORD TYPE 011 : DISTRIBUTIVE EXPENSES
Pre-data entry scrutiny was carried out on the schedules for inter and intra block consistency checks. Such editing was mostly manual, although some editing was automatic. But, for major inconsistencies, the schedules were referred back to NSSO (FOD) for clarifications/modifications.
Code list, State code list, Tabulation program and ASICC code are also may be refered in the External Resources which are used for editing and data processing as well..
Relative Standard Error (RSE) is calculated in terms of worker, wages to worker and GVA using the formula. Programs developed in Visual Foxpro are used to compute the RSE of estimates.
To check for consistency and reliability of data the same are compared with the NIC-2digit level growth rate at all India Index of Production (IIP) and the growth rates obtained from the National Accounts Statistics at current and constant prices for the registered manufacturing sector.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
Poverty and empowerment impacts of the Bihar Rural Livelihoods Project: Evidence from a Mixed-Methods Cluster-Randomized Trial Jeevika is a World Bank assisted project focussed (now under the umbrella of the NRLM) on building networks of women's self-help credit and savings groups,and then using them as a base of other "vertical" interventions. This houshold and village survey data was collected over two rounds to conduct an impact evaluation of Phase 2 of the project with random assignment of the project over a two year period. Collaboration: World Bank Social Observatory team with Government of Bihar. Evaluation design, methods and implementation In order to evaluate the impacts of Jeevika, 180 panchayats were randomly selected from within 16 blocks in seven districts where scale-up of the project was planned but had not yet occurred. Some of these blocks were in districts relatively far from Patna, which had not yet been entered by the project (Madhepura, Saharsa, Supaul), while others were within the larger districts within which Jeevika was already operating (Gaya, Nalanda, Madhubani, Muzaffarpur). The project had already entered these districts in Phase 1, but had not yet expanded to all blocks due to (project) capacity constraints. Within each of the study villages, hamlets (tolas) in which the majority of the population belonged to a scheduled caste or scheduled tribe were identified. This was the same procedure as used by Jeevika to identify the target population (of poor women) for mobilization into the project. Tolas were identified through a focus group discussion held in each village, along with the population of target castes (SC/STs) within each. In Bihar, tola boundaries are easily distinguishable. Field teams would enter the tola at a random point, determine the skip pattern based on the population size and target sample size, and select households through a random walk. Survey staff aimed to include 70% SC/ST households, and 30% households from other castes in each village, in order to ensure variation in socio-economic status within the sample. If the households in selected tolas included fewer SC/ST households than this, households from nearby non-SC/ST majority tolas were also included in the sample. Interviews for the quantitative study were conducted using a structured paper survey form. Baseline and follow up surveys included detailed questions on debt, asset holdings, consumption expenditures, livelihood activities, and women’s mobility, role in household decisions, and aspirations. In addition, in each village, a focus group discussion was conducted, through which data were collected on village level attributes such as local sources of credit, interest rates from each source, local wage rates, and the presence of or distance to markets and other institutions and amenities. Respondents were not compensated for their time. If a respondent was unavailable during initial field visit, the supervisor recorded contact details and returned with interviewers at a later date. As long as the survey team was in that district, repeat visits were undertaken, keeping attrition to a minimum. If a household could not be re-surveyed at endline, it was replaced with another household in the same village. Short re-surveys containing a subset of questions from the main survey were conducted by supervisors for 10% of the sample. Staff from the project also conducted occasional visits after the survey was completed in a village to confirm that all modules had been covered by survey staff. Data was entered in duplicate using CSPro and any discrepancies were corrected based on the paper form. Following the baseline survey, panchayats were stratified on the 16 administrative blocks in the sample and the panchayat-level mean of outstanding high cost (monthly interest rate of 4% or higher) debt held by households at baseline. They were then randomly assigned to an early rollout group or a late rollout group using the random number generator within the Stata statistical analysis software package. The baseline survey was administered to 8988 households across 333 villages in 179 panchayats. The target number of households per panchayat was 50, but there was some variation around this in reality. The lowest number of households in a given panchayat was 49 (9 panchayats), and the largest number was 53 households (3 panchayats). To ensure that control panchayats were not entered by the project, Jeevika held a quarterly ""evaluation panchayat"" meeting, which block project managers of the 16 blocks were required to attend. At these meetings the project M&E team checked whether any village in a control panchayat had been entered, and received an update on progress in treatment panchayats. This procedure was successful in maintaining adherence to randomized treatment assignment throughout the evaluation period. Of the 4,472 households in the sample across 89 panchayats allocated to receive the SHG intervention, 2,722 reported that one of their members belonged to an SHG by endline, constituting 61% of the sample. Since SHG membership was optional, approximately 38% of households in treatment group panchayats had no member in an SHG by endline. The remaining 56 households (across 39 panchayats) did not answer this question or were lost to follow-up (only one such household was not replaced). Although it was possible for those residing in control areas to join (non-Jeevika) SHGs, the proportion of households group in this area containing SHG members remained minimal at endline, with only 460 households (just over 10% of the total sample) reporting SHG membership. Attrition (and replacement) were similar in control and treatment arms, with 132 treatment group baseline households not reached for a follow-up interview and all but one of these replaced, and 128 not reached and thus replaced in the control group. The qualitative evaluation draws on data collected from 2011 to early 2015 in six villages, two where Jeevika had been operating since 2006, two it entered during Phase II, and two where it had not yet intervened by the end of data collection. The Phase I treatment villages were selected at random from the set of previously entered villages in two different districts – Muzaffarpur and Madhubani. Each treatment village was then matched with a set of control villages using propensity score matching methods (Imbens and Rubin 2015) on the basis of village level data from the 2001 government census on literacy, caste composition, landlessness, levels of outmigration, and the availability of infrastructure. In order to find the closest treatment-control match, field investigators then visited the set of possible controls for two days for visual inspection and qualitative assessment. This combined quantitative and qualitative matching method yielded three matched pairs of phase I treatment, phase II treatment, and control villages, with each pair located within the same district. This method of sample selection allows comparison of villages receiving the intervention at each stage with their statistical clones that received it at a different stage or had not received it at all, allowing us to draw causal inferences about the effects induced by Jeevika during the different phases of its expansion. For the purpose of keeping their identity anonymous, we refer to the villages in Madhubani district as Ramganj (Phase I treatment), Nauganj (Phase II treatment) and Virganj (control) and the villages in Muzaffarpur district Saifpur (Phase I treatment), Raipur (Phase II treatment) and Bhimpur (Control). Villages in Madhubani are divided into segregated and caste-homogenous tolas. Brahmins are a majority in these villages, and their tolas are located close to the main resources of the village: the temple, pond and school. All other tolas extend southwards in decreasing order of status in the caste hierarchy, with the Schedule Caste (SC) communities being located farthest south. Each of these communities is also spatially segregated. The SC communities of these villages are mainly comprised of Musahar, Pasi, Ram, and Dhobi subcastes, and the other backward caste communities are comprised of Yadav, Mandal, Badhai, Hajaam, and Teli subcastes. The only big difference between Ramganj and Virganj is that the former has a sizeable Muslim population, comprising Sheikhs, Ansaris, Nutts and Pamariyas, while in the latter, there is only one Muslim (Sheikh) family in the entire village. Inhabitants of these villages primarily depend on agriculture and related activities for their livelihood. The villages in Muzaffarpur district are largely similar to the ones in Madhubani with the important differences being that they are primarily bazaar (market)-centric and the dominant caste is the Chaudhury, who belong to the business community. In each of these villages, first, preliminary studies were conducted using several participatory rural appraisal methods to gain an understanding of the layout of the village. Following this, a team of four field investigators (recruited from a local research-based NGO) accompanied by one of the three principal researchers would visit the villages every three to four months for a cycle of data collection (11 in total over the study period). During every cycle, the ethnographers would enter a different tola in the village for a week (there are roughly 10 tolas in each village). The ethnographers spoke to as many respondents as possible across the village and also returned to the first few respondents in the concluding cycles of data collection. These repeat interviews allowed us to see how respondents reflected on changes experienced as a result of the project [or otherwise] over the four-year period. The first set of participants was selected to be representative of different socioeconomic strata in the village, and subsequent participants were selected via a mixture of purposive and snowball sampling. We
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Canada population
Literacy in India has been increasing as more and more people receive a better education, but it is still far from all-encompassing. In 2022, the degree of literacy in India was about 76.32 percent, with the majority of literate Indians being men. It is estimated that the global literacy rate for people aged 15 and above is about 86 percent. How to read a literacy rateIn order to identify potential for intellectual and educational progress, the literacy rate of a country covers the level of education and skills acquired by a country’s inhabitants. Literacy is an important indicator of a country’s economic progress and the standard of living – it shows how many people have access to education. However, the standards to measure literacy cannot be universally applied. Measures to identify and define illiterate and literate inhabitants vary from country to country: In some, illiteracy is equated with no schooling at all, for example. Writings on the wallGlobally speaking, more men are able to read and write than women, and this disparity is also reflected in the literacy rate in India – with scarcity of schools and education in rural areas being one factor, and poverty another. Especially in rural areas, women and girls are often not given proper access to formal education, and even if they are, many drop out. Today, India is already being surpassed in this area by other emerging economies, like Brazil, China, and even by most other countries in the Asia-Pacific region. To catch up, India now has to offer more educational programs to its rural population, not only on how to read and write, but also on traditional gender roles and rights.
In the financial year 2021, a majority of Indian households fell under the aspirers category, earning between 125,000 and 500,000 Indian rupees a year. On the other hand, about three percent of households that same year, accounted for the rich, earning over 3 million rupees annually. The middle class more than doubled that year compared to 14 percent in financial year 2005.
Middle-class income group and the COVID-19 pandemic
During the COVID-19 pandemic specifically during the lockdown in March 2020, loss of incomes hit the entire household income spectrum. However, research showed the severest affected groups were the upper middle- and middle-class income brackets. In addition, unemployment rates were rampant nationwide that further lead to a dismally low GDP. Despite job recoveries over the last few months, improvement in incomes were insignificant.
Economic inequality
While India maybe one of the fastest growing economies in the world, it is also one of the most vulnerable and severely afflicted economies in terms of economic inequality. The vast discrepancy between the rich and poor has been prominent since the last three decades. The rich continue to grow richer at a faster pace while the impoverished struggle more than ever before to earn a minimum wage. The widening gaps in the economic structure affect women and children the most. This is a call for reinforcement in in the country’s social structure that emphasizes access to quality education and universal healthcare services.
The third wave of the Asian Barometer survey (ABS) conducted in 2010 and the database contains nine countries and regions in East Asia - the Philippines, Taiwan, Thailand, Mongolia, Singapore, Vietnam, Indonesia, Malaysia and South Korea. The ABS is an applied research program on public opinion on political values, democracy, and governance around the region. The regional network encompasses research teams from 13 East Asian political systems and 5 South Asian countries. Together, this regional survey network covers virtually all major political systems in the region, systems that have experienced different trajectories of regime evolution and are currently at different stages of political transition.
The mission and task of each national research team are to administer survey instruments to compile the required micro-level data under a common research framework and research methodology to ensure that the data is reliable and comparable on the issues of citizens' attitudes and values toward politics, power, reform, and democracy in Asia.
The Asian Barometer Survey is headquartered in Taipei and co-hosted by the Institute of Political Science, Academia Sinica and The Institute for the Advanced Studies of Humanities and Social Sciences, National Taiwan University.
13 East Asian political systems: Japan, Mongolia, South Koreas, Taiwan, Hong Kong, China, the Philippines, Thailand, Vietnam, Cambodia, Singapore, Indonesia, and Malaysia; 5 South Asian countries: India, Pakistan, Bangladesh, Sri Lanka, and Nepal
-Individuals
Sample survey data [ssd]
Compared with surveys carried out within a single nation, cross-nation survey involves an extra layer of difficulty and complexity in terms of survey management, research design, and database modeling for the purpose of data preservation and easy analysis. To facilitate the progress of the Asian Barometer Surveys, the survey methodology and database subproject is formed as an important protocol specifically aiming at overseeing and coordinating survey research designs, database modeling, and data release.
As a network of Global Barometer Surveys, Asian Barometer Survey requires all country teams to comply with the research protocols which Global Barometer network has developed, tested, and proved practical methods for conducting comparative survey research on public attitudes.
Research Protocols:
A model Asian Barometer Survey has a sample size of 1,200 respondents, which allows a minimum confidence interval of plus or minus 3 percent at 95 percent probability.
Face-to-face [f2f]
A standard questionnaire instrument containing a core module of identical or functionally equivalent questions. Wherever possible, theoretical concepts are measured with multiple items in order to enable testing for construct validity. The wording of items is determined by balancing various criteria, including: the research themes emphasized in the survey, the comprehensibility of the item to lay respondents, and the proven effectiveness of the item when tested in previous surveys.
Survey Topics: 1.Economic Evaluations: What is the economic condition of the nation and your family: now, over the last five years, and in the next five years? 2.Trust in institutions: How trustworthy are public institutions, including government branches, the media, the military, and NGOs. 3.Social Capital: Membership in private and public groups, the frequency and degree of group participation, trust in others, and influence of guanxi. 4.Political Participatio: Voting in elections, national and local, country-specific voting patterns, and active participation in the political process as well as demonstrations and strikes. Contact with government and elected officials, political organizations, NGOs and media. 5.Electoral Mobilization: Personal connections with officials, candidates, and political parties; influence on voter choice. 6.Psychological Involvement and Partisanship: Interest in political news coverage, impact of government policies on daily life, and party allegiance. 7.Traditionalism: Importance of consensus and family, role of the elderly, face, and woman in theworkplace. 8.Democratic Legitimacy and Preference for Democracy: Democratic ranking of present and previous regime, and expected ranking in the next five years; satisfaction with how democracy works, suitability of democracy; comparisons between current and previous regimes, especially corruption; democracy and economic development, political competition, national unity, social problems, military government, and technocracy. 9.Efficacy, Citizen Empowerment, System Responsiveness: Accessibility of political system: does a political elite prevent access and reduce the ability of people to influence the government. 10.Democratic vs. Authoritarian Values: Level of education and political equality, government leadership and superiority, separation of executive and judiciary. 11.Cleavage: Ownership of state-owned enterprises, national authority over local decisions, cultural insulation, community and the individual. 12.Belief in Procedural Norms of Democracy: Respect of procedures by political leaders: compromise, tolerance of opposing and minority views. 13.Social-Economic Background Variables: Gender, age, marital status, education level, years of formal education, religion and religiosity, household, income, language and ethnicity. 14.Interview Record: Gender, age, class, and language of the interviewer, people present at the interview; did the respondent: refuse, display impatience, and cooperate; the language or dialect spoken in interview, and was an interpreter present.
Quality checks are enforced at every stage of data conversion to ensure that information from paper returns is edited, coded, and entered correctly for purposes of computer analysis. Machine readable data are generated by trained data entry operators and a minimum of 20 percent of the data is entered twice by independent teams for purposes of cross-checking. Data cleaning involves checks for illegal and logically inconsistent values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PMAY-G is a flagship programme of the Government of India. It is the largest public housing programme in the country with a mission to alleviate poverty. Its objective is to provide 'Housing for All' by the year 2022. Under the scheme, the minimum size of the house is 25 sq.mt. with a hygienic cooking space. The scheme provides financial assistance for constructing pucca houses for the rural poor. Beneficiaries are selected using housing deprivation parameters as per the Socio-Economic and Caste Census (SECC) of 2011, which is to be verified by the Gram Sabhas.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
City Profile Census Data
This dataset falls under the category Planning & Policy Planning.
It contains the following data: Information on the population
This dataset was scouted on 2022-02-24 as part of a data sourcing project conducted by TUMI. License information might be outdated: Check original source for current licensing.
The data can be accessed using the following URL / API Endpoint: https://smartcities.data.gov.in/resources/city-profile-census-data