100+ datasets found
  1. a

    Agricultural Land Use Maps (ALUM)

    • kauai-open-data-kauaigis.hub.arcgis.com
    • opendata.hawaii.gov
    • +3more
    Updated Nov 15, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2013). Agricultural Land Use Maps (ALUM) [Dataset]. https://kauai-open-data-kauaigis.hub.arcgis.com/datasets/HiStateGIS::agricultural-land-use-maps-alum
    Explore at:
    Dataset updated
    Nov 15, 2013
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Description: Agricultural Land Use Maps (ALUM) for islands of Kauai, Oahu, Maui, Molokai, Lanai and Hawaii as of 1978-1980. Sources: State Department of Agriculture; Hawaii Statewide GIS Program, Office of Planning. Note: August, 2018 - Corrected one incorrect record, removed coded value attribute domain.For more information on data sources and methodologies used, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/alum.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  2. G

    Agriculture Capability Mapping

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, fgdb/gdb, html +2
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of British Columbia (2025). Agriculture Capability Mapping [Dataset]. https://open.canada.ca/data/en/dataset/582a6147-4e24-468c-a048-762302139afc
    Explore at:
    kmz, csv, fgdb/gdb, shp, htmlAvailable download formats
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    Government of British Columbia
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The Agriculture Capability mapping dataset is the digitized equivalent of the legacy Agriculture Capability Scanned Maps, which date from the 1960's to the 1990s. Agriculture Capability mapping is also known as 'Soil Capability for Agriculture' and 'Agricultural Capability' mapping. Agricultural Capability is an interpreted mapping product based on soil and climate information. In general, climate determines the range of crops possible in an area and the soils determine the type and relative level of management practices required. This is legacy data and changes in climate are not reflected. For more information about the classification system see: Land Capability Classification for Agriculture. Use caution utilizing these legacy maps as the classifications were based on common land management practices and typical crops of the 1960s-1990s era, and subsequent site specific land management practices (e.g. installation of drainage) may have modified the soil conditions since the mapping was completed. This Agriculture Capability legacy mapping is included in the Soil Information Finder Tool (SIFT) mapping application. The SIFT application provides more detailed climate data (e.g. Growing Degree Days, Frost Free Period (5 C), (1960-1990 climate normals). The SIFT 'Soil query tools' may be useful for identifying areas with specific 'growing conditions' of interest based on soils present (soil name), soil texture, drainage, coarse fragment content, slope, elevation, growing degree days and frost free period. Note: This Agriculture Capability Mapping dataset is based on soil mapping at 1:100,000, 1:50,000 or 1:20,000 scale, and is more detailed than the 1:250,000 scale Canada Land Inventory (CLI) Agricultural Capability mapping (available here).

  3. Data from: Not just crop or forest: building an integrated land cover map...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Not just crop or forest: building an integrated land cover map for agricultural and natural areas (tabular files) [Dataset]. https://catalog.data.gov/dataset/data-from-not-just-crop-or-forest-building-an-integrated-land-cover-map-for-agricultural-a-b4a08
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv

  4. Z

    Data from: Global maps of agricultural expansion potential at a 300 m...

    • data.niaid.nih.gov
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huijbregts, M.A.J. (2024). Global maps of agricultural expansion potential at a 300 m resolution [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7665901
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Čengić, M.
    Stehfest, E.
    Doelman, J.C.
    Defourny, P.
    Lamarche, C.
    Steinmann, Z.J.N.
    Schipper, A.M.
    Huijbregts, M.A.J.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global maps of agricultural expansion potential at a 300 m resolution

    This repository contains data from “Global maps of agricultural expansion potential at a 300 m resolution” study.

    Abstract:

    The global expansion of agricultural land is a leading driver of climate change and biodiversity loss. However, the spatial resolution of current global land change models is relatively coarse, which limits environmental impact assessments. To address this issue, we developed global maps representing the potential for conversion into agricultural land at a resolution of 10 arc-seconds (approximately 300 m at the equator). We created the maps using Artificial Neural Network (ANN) models relating locations of recent past conversions (2007-2020) into one of three cropland categories (cropland only, mosaics with >50% crops, and mosaics with <50% crops) to various predictor variables reflecting topography, climate, soil and accessibility. Cross-validation of the models indicated good performance with Area Under the Curve (AUC) values of 0.88-0.93. Hindcasting of the models from 1992 to 2006 revealed a similar high performance (AUC of 0.83-0.91), indicating that our maps provide representative estimates of current agricultural conversion potential provided that the drivers underlying agricultural expansion patterns remain the same. Our maps can be used to downscale projections of global land change models to more fine-grained patterns of future agricultural expansion, which is an asset for global environmental assessments.

    Data description:

    We provide here raster maps of agricultural expansion potential for three categories of agriculture - (i) cropland only, (ii) mosaics with >50% crops, and (iii) mosaics with <50% crops. The source for delineating categories was the ESA CCI land cover data. ESA CCI land cover data recognizes additional categories of agricultural land, however some of them have limited spatial coverage. For that reason, we merged the rainfed cropland and irrigated cropland categories into a single category - cropland only, where a grid cell is largely dominated by crops. Rainfed croplands account for 87% of the this category, while irrigated croplands account for the remaining 13%. Mosaic categories were defined in the same way as in the ESA CCI land cover dataset. Numerical designations of these categories in the ESA CCI land cover dataset are 10, 20, 30, and 40 for rainfed, irrigated, mosaics with >50% crops, and mosaics with <50% crops, respectively.

    Global maps are provided at the spatial resolution of 10 arc-seconds (~300 meters at the equator). These files are available for three categories in the main folder with the filename prefix "Agri_potential_mosaic_*". The numerical value in the file name refers to the agricultural category type (10 - cropland only, 30 - mosaics with >50% crops, and 40 - mosaics with <50% crops). In addition to the 10 arc-second layers, we provide aggregated layers with the spatial resolution of 30 arc-seconds, 5 and 10 arc-minutes, for coarse-grained applications and less computationally-intensive analyses. We provide the aggregated layer maps for the minimum, median, mean/average, and maximum values of the aggregated 10 arc-seconds values within the coarser cells. There are in total 9 files provided for each of the aggregated spatial resolutions.

    Repository content:

    Full resolution layers: - “Agri_potential_mosaic_10.tif” is the global raster map for cropland only category at the spatial resolution of 10 arc-seconds. - “Agri_potential_mosaic_30.tif” is the global raster map for mosaics with >50% crops category at the spatial resolution of 10 arc-seconds. - “Agri_potential_mosaic_40.tif” is the global raster map for mosaics with <50% crops category at the spatial resolution of 10 arc-seconds. - "readme.txt" is the text file with the basic description and the metadata for the repository.

    Aggregated layers: This folder contains files with a different spatial resolution (30s, 5m, 10m; see argument "RESL" below).

    File names for the aggregated maps contain the following information: “Agri_potential_aggregated_RESL_TYPE_CATG.tif”

    • "RESL" is the spatial resolution of the layer. Value is either "30s", "5m", or "10m", corresponding to spatial resolution of 30 arc-second, 5 arc-minutes, and 10 arc-minutes.

    • "TYPE" is the type of aggregated values. Value is either "min", "avg", "med", or "max", corresponding to the minimum, mean, median, and maximum values of the aggregated 10 arc-seconds values within the coarser cells.

    • "CATG" is the category of agricultural land. Value is either "10", "30", or "40", where category 10 is cropland only, category 30 is mosaics with >50% crops, and category 40 is mosaics with <50% crops.

    Raster metadata:

    Driver: GTiff Projection proj4string: +proj=longlat +ellps=WGS84 +no_defs

    Notes on use:

    Our conversion potential maps are useful for researchers and practitioners interested in downscaling projections of global land change models to a more fine-grained patterns of future agricultural expansion, or interested in assessing the locations and effects of future agricultural expansion, for example in integrated assessment modelling or biodiversity impact modelling. When coupling outputs with integrated assessment modelling, our maps need to be combined with estimates of the expected future demands for agricultural land per socio-economic region. In such a coupled approach, our global conversion potential maps can be used to spatially allocate the additional agricultural land demands. In this context, it is important to note that the modelled relationships between the agricultural conversions and our set of predictors may result in non-zero probabilities also in areas that are highly unlikely to be converted into agriculture, such as urban areas or strictly protected nature reserves. This implies that users of our maps may need to implement an additional map layer that masks areas unavailable for agricultural expansion. We also stress that our maps represent agricultural conversion potential conditional on the predictor variables that we included, implying that our maps do not capture the possible influences of other potentially relevant predictors. For example, our conversion potential models and maps do not account for permafrost, which may pose significant challenges to possible agricultural expansion to higher latitudes in response to climate change.

  5. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    rest service, zip(140021333), shp(126828193), zip(159870566), gdb(86886429), shp(126548912), shp(107610538), gdb(86655350), gdb(85891531), zip(144060723), data, html, zip(169400976), zip(189880202), zip(98690638), zip(179113742), zip(94630663), zip(88308707), gdb(76631083)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  6. Agricultural land use (raster) : National-scale crop type maps for Germany...

    • zenodo.org
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gideon Tetteh; Gideon Tetteh; Marcel Schwieder; Marcel Schwieder; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi (2025). Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Dataset]. http://doi.org/10.5281/zenodo.15055561
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gideon Tetteh; Gideon Tetteh; Marcel Schwieder; Marcel Schwieder; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains a map of the main classes of agricultural land use (dominant crop types and other land use types) in Germany for the year 2023. It complements a series of maps that are produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:
    Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015).

    The maps are available as cloud optimized GeoTiffs, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the URL that will be provided on request. By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    _

    Mailing list

    If you do not want to miss the latest updates, please enroll to our mailing list.

    _

    References:

    Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell.
    https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Statistisches Bundesamt, Deutschland (2024). Ökosystematlas Deutschland
    https://oekosystematlas-ugr.destatis.de/ (last accessed: 08.02.2024).

    _
    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

  7. B

    UBC Farm Land Use Map - GIS Files

    • borealisdata.ca
    • open.library.ubc.ca
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre for Sustainable Food Systems at UBC Farm (2021). UBC Farm Land Use Map - GIS Files [Dataset]. http://doi.org/10.5683/SP2/ZIOMGM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 3, 2021
    Dataset provided by
    Borealis
    Authors
    Centre for Sustainable Food Systems at UBC Farm
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    UBC Farm
    Description

    This dataset contains shape files and supporting files for the most up-to-date (as of the published date) land use map at the UBC Farm. The best uses of these maps are: 1) to visualize locations of field codes in other UBC Farm datasets; 2) to visualize field codes for UBC Farm research projects, and 3) to understand the general layout of the Farm.

  8. National-scale crop type maps for Germany from combined time series of...

    • zenodo.org
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukas Blickensdörfer; Marcel Schwieder; Dirk Pflugmacher; Claas Nendel; Stefan Erasmi; Patrick Hostert; Lukas Blickensdörfer; Marcel Schwieder; Dirk Pflugmacher; Claas Nendel; Stefan Erasmi; Patrick Hostert (2024). National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019) [Dataset]. http://doi.org/10.5281/zenodo.5153047
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lukas Blickensdörfer; Marcel Schwieder; Dirk Pflugmacher; Claas Nendel; Stefan Erasmi; Patrick Hostert; Lukas Blickensdörfer; Marcel Schwieder; Dirk Pflugmacher; Claas Nendel; Stefan Erasmi; Patrick Hostert
    Description

    Detailed maps of agricultural landscapes are a valuable data source for manifold applications, such as environmental modelling, biodiversity monitoring or the support of agricultural statistics. Satellites from the European Copernicus program, especially, Sentinel-1 and Sentinel-2, as well as the Landsat missions operated by NASA/USGS, acquire data with a spatial resolution (10 m to 30 m) that is sufficient to identify field structures in complex agricultural landscapes. Time series of combined Sentinel-2 and Landsat data facilitate to differentiate crop types with a high thematic detail based on differences in land surface phenology. However, large data gaps due to frequent cloud cover may hamper such classification approaches.

    We thus combined dense interpolated times series of Sentinel-2A/B and Landsat data with monthly composites of Sentinel-1 backscatter data to overcome periods with high cloud contamination. To further account for regional variations along the agroecological gradient within Germany, we additionally included a broad set of spatially explicit environmental data in a random forest classification model.

    All optical satellite data were downloaded, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019; https://force-eo.readthedocs.io/en/latest/ last accessed: 19. August 2021), before environmental and SAR data were included in the ARD cube.

    For each year (2017, 2018 and 2019) we trained an individual random forest model with 24 agricultural classes. Each model was independently validated with area adjusted overall accuracies of 80% (2017), 79% (2018), and 78% (2019). Further details regarding the data and methods used as well as class wise accuracies can be found in Blickensdörfer et al. (2022).

    The final models were applied to areas in Germany that were defined as agricultural land in ATKIS DLM 2018 (Geobasisdaten: © GeoBasis-DE / BKG (2018)). Post-processing of the final maps included applying a sieve filter, the exclusion of classes other than grasslands and small woody features above 900 m (based on the Digital Elevation Model for Germany BKG (2015)) and the exclusion of grapevine/hops areas that were not labelled as the respective permanent crop in ATKIS DLM (labelled as other agricultural areas in the final map).

    The maps are provided as GeoTiff files together with a QGIS legend file for visualization.

    Class catalogue:

    10 Grassland
    31 Winter wheat
    32 Winter rye
    33 Winter barley
    34 Other winter cereal
    41 Spring barley
    42 Spring oat
    43 Other spring cereal
    50 Winter rapeseed
    60 Legume
    70 Sunflower
    80 Sugar beet
    91 Maize
    92 Maize (grain)
    100 Potato
    110 Grapevine
    120 Strawberry
    130 Asparagus
    140 Onion
    150 Hops
    160 Orchard
    181 Carrot
    182 Other vegetables
    555 Small woody features
    999 Other agricultural areas

    Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 19. August 2021).

    BKG, Bundesamt für Kartographie und Geodäsie (2018). Digitales Basis-Landschaftsmodell.
    https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 19. August 2021).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    National-scale crop type maps for Germany © 2021 by Blickensdörfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick is licensed under CC BY 4.0.

  9. d

    Crop Index Model

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Crop Index Model [Dataset]. https://catalog.data.gov/dataset/crop-index-model-9beba
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commission
    Description

    Cropland Index The Cropland Index evaluates lands used to produce crops based on the following input datasets: Revised Storie Index, California Important Farmland data, Electrical Conductivity (EC), and Sodium Adsorption Ratio (SAR). Together, these input layers were used in a suitability model to generate this raster. High values are associated with better CroplandsCalifornia Important Farmland data – statistical data used for analyzing impacts on California’s agricultural resources from the Farmland Mapping and Monitoring Program. Agricultural land is rated according to soil quality and irrigation status. The maps are updated every two years (on even numbered years) with the use of a computer mapping system, aerial imagery, public review, and field reconnaissance. Cropland Index Mask - This is a constructed data set used to define the model domain. Its footprint is defined by combining the extent of the California Important Farmland data (2018) classifications listed above and the area defined by California Statewide Crop Mapping for the state of California.Prime Farmland – farmland with the best combination of physical and chemical features able to sustain long term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date.Farmland of Statewide Importance – farmland similar to Prime Farmland but with minor shortcomings, such as greater slopes or less ability to store soil moisture. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date. Unique Farmland – farmland of lesser quality soils used for the production of the state’s leading agricultural crops. This land is usually irrigated but may include Non irrigated orchards or vineyards as found in some climatic zones in California. Land must have been cropped at some time during the four years prior to the mapping date. Gridded Soil Survey Geographic Database (gSSURGO) – a database containing information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS. The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. California Revised Storie Index - is a soil rating based on soil properties that govern a soil’s potential for cultivated agriculture in California. The Revised Storie Index assesses the productivity of a soil from the following four characteristics: Factor A, degree of soil profile development; factor B, texture of the surface layer; factor C, slope; and factor X, manageable features, including drainage, microrelief, fertility, acidity, erosion, and salt content. A score ranging from 0 to 100 percent is determined for each factor, and the scores are then multiplied together to derive an index rating.Electrical Conductivity - is the electrolytic conductivity of an extract from saturated soil paste, expressed as Deci siemens per meter at 25 degrees C. Electrical conductivity is a measure of the concentration of water-soluble salts in soils. It is used to indicate saline soils. High concentrations of neutral salts, such as sodium chloride and sodium sulfate, may interfere with the adsorption of water by plants because the osmotic pressure in the soil solution is nearly as high as or higher than that in the plant cells. Sodium Adsorption Ratio - is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the Ca + Mg concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced saturated hydraulic conductivity (Ksat) and aeration, and a general degradation of soil structure.

  10. 2012 Census of Agriculture - Web Maps

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Agricultural Statistics Service, Department of Agriculture (2025). 2012 Census of Agriculture - Web Maps [Dataset]. https://catalog.data.gov/dataset/2012-census-of-agriculture-web-maps
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    National Agricultural Statistics Servicehttp://www.nass.usda.gov/
    Description

    The Census of Agriculture provides a detailed picture every five years of U.S. farms and ranches and the people who operate them. Conducted by USDA’s National Agricultural Statistics Service, the 2012 Census of Agriculture collected more than six million data items directly from farmers. The Ag Census Web Maps application makes this information available at the county level through a few clicks. The maps and accompanying data help users visualize, download, and analyze Census of Agriculture data in a geospatial context.

  11. n

    NYS Agricultural Districts

    • opdgig.dos.ny.gov
    • gateway-kids-nysdos.hub.arcgis.com
    • +1more
    Updated Apr 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2023). NYS Agricultural Districts [Dataset]. https://opdgig.dos.ny.gov/datasets/5c5b4550123343fe95a20f0afc00f042
    Explore at:
    Dataset updated
    Apr 30, 2023
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    These GIS files represent geographic boundaries for lands that are under the protection of NYS Agricultural District Law, administered by the New York State Department of Agriculture and Markets. The boundaries are derived from New York State Agricultural District, 1:24,000-scale, maps produced at county agencies. The district boundaries correspond to tax parcel data. District boundaries are joined into a file representing all of the Agricultural Districts within an entire county. Tax parcel detail is not included in this dataset. Road and utility rights-of-way are only included when they are delineated on the original 1:24,000 scale maps. Please note that boundaries may be generalizations; precise information can be obtained from the county or town tax parcel information.View Dataset on the Gateway

  12. Agricultural Mapping Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Agricultural Mapping Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-agricultural-mapping-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Agricultural Mapping Software Market Outlook



    The global agricultural mapping software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.4 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.5% during the forecast period. This promising growth is driven by increasing adoption of precision farming techniques and the need for efficient agricultural management practices. Advances in technology, coupled with rising demand for food production, are significant factors propelling the agricultural mapping software market.



    One of the primary growth factors for the agricultural mapping software market is the increasing need for precision farming. Precision farming techniques rely on detailed data collection and analysis, which is facilitated by advanced agricultural mapping software. These tools help farmers make informed decisions about planting, watering, and harvesting, thereby maximizing crop yield and resource efficiency. The emphasis on data-driven farming is expected to drive significant adoption of mapping software across the globe.



    Another crucial growth factor is the rising global population, which directly correlates with the increasing demand for food. As the world population continues to grow, the pressure on agricultural systems becomes more intense. Agricultural mapping software aids in optimizing land use, monitoring crop health, and predicting yields, thus playing a pivotal role in meeting the escalating food demands. The software's ability to enhance productivity and sustainability is highly appealing to stakeholders in the agricultural sector.



    Technological advancements in GIS (Geographic Information Systems) and remote sensing are also propelling the market. The integration of satellite imagery, drones, and IoT (Internet of Things) devices with agricultural mapping software enables real-time data acquisition and analysis. These technologies provide farmers with detailed insights into their fields, enabling them to detect issues early and take corrective action promptly. The continuous innovation in these technologies is expected to further boost market growth.



    From a regional perspective, North America is anticipated to hold the largest market share due to the high adoption rate of advanced farming technologies and substantial investments in agricultural research. Europe follows closely, driven by stringent agricultural policies and a strong focus on sustainable farming practices. The Asia Pacific region is expected to witness the fastest growth, attributed to increasing government initiatives to modernize agriculture and substantial investments in agritech startups. Latin America and the Middle East & Africa also present significant growth opportunities due to expanding agricultural activities and adoption of modern farming techniques.



    Crop Monitoring Software plays a pivotal role in the agricultural mapping software market by providing farmers with the tools necessary to maintain and enhance crop health. This software allows for continuous observation and analysis of crops, ensuring that any potential issues such as diseases, pest infestations, or nutrient deficiencies are identified early. By leveraging real-time data, farmers can make informed decisions that lead to improved crop yields and quality. The integration of Crop Monitoring Software with other agricultural technologies further enhances its capabilities, making it an indispensable tool for modern farming practices. As the demand for efficient and sustainable agriculture grows, the adoption of such software is expected to rise, contributing significantly to the market's expansion.



    Component Analysis



    The agricultural mapping software market by component is divided into two primary segments: software and services. The software segment encompasses a range of solutions tailored to various agricultural needs, including GIS software, remote sensing software, and farm management software. These tools are designed to collect, analyze, and interpret data to support decision-making processes in farming operations. The sophistication and variety of available software solutions are continually expanding, driven by ongoing research and development efforts in agritech.



    In contrast, the services segment includes consulting, training, maintenance, and support services that complement the software solutions. As more farmers and agricultural enterprises adopt mapp

  13. a

    Map of Land Cover in the AG Zone - PDF

    • hub.arcgis.com
    • agzone-auburnme.opendata.arcgis.com
    Updated Jan 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AccessAuburn (2019). Map of Land Cover in the AG Zone - PDF [Dataset]. https://hub.arcgis.com/documents/c762120a032b41918f0212fbceb88376
    Explore at:
    Dataset updated
    Jan 22, 2019
    Dataset authored and provided by
    AccessAuburn
    Description

    PDF maps of land cover in AG and RP zones. Data created 3/2018 by Spatial Alternatives for The Ad-Hoc Committee on Auburn's Agriculture and Natural Resource. Data source: 2013 Aerial Imagery. See also Land Cover summary.

  14. Agricultural Mapping Services Market Growth - Trends & Forecast 2025 to 2035...

    • futuremarketinsights.com
    pdf
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Future Market Insights (2025). Agricultural Mapping Services Market Growth - Trends & Forecast 2025 to 2035 [Dataset]. https://www.futuremarketinsights.com/reports/agricultural-mapping-services-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Future Market Insights
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2025 - 2035
    Area covered
    Worldwide
    Description

    The Agricultural Mapping Services Market is projected to exceed USD 7.7 billion by 2035, rising from an estimated USD 5.8 billion in 2025. A compound annual growth rate (CAGR) of 2.9% has been forecast for the 2025 to 2035 period.

    AttributesKey Insights
    Market Value, 2025USD 5.8 billion
    Market Value, 2035USD 7.7 billion
    Value CAGR (2025 to 2035)2.9%

    Semi-annual update

    ParticularValue CAGR
    H1 20243.3% (2024 to 2034)
    H2 20243.5% (2024 to 2034)
    H1 20253.6% (2025 to 2035)
    H2 20253.8% (2025 to 2035)

    Country-Wise Insights

    CountriesValue CAGR (2025 to 2035)
    The USA4.2%
    China4.0%
    India4.5%
    Brazil3.8%
    Australia4.0%
  15. d

    Agricultural Land Spatial Map (Soil Survey)

    • data.gov.tw
    csv, json, xml
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Land Spatial Map (Soil Survey) [Dataset]. https://data.gov.tw/en/datasets/7285
    Explore at:
    xml, csv, jsonAvailable download formats
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    Ministry of Agriculture
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The information provided includes: file identification code, Chinese file name, interpretation data creation time, data creation time, summary, purpose, data creation status, spatial display type, theme keywords, location keywords, ground resolution, data creation scale, map joining method, map entity name, geometric object type, format name, format version, westernmost longitude, easternmost longitude, southernmost latitude, northernmost latitude, maintenance update frequency, reference system identification code, and distribution map URL, etc.

  16. f

    Agro-MAPS A global spatial database of agricultural land-use statistics...

    • data.apps.fao.org
    Updated Sep 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Agro-MAPS A global spatial database of agricultural land-use statistics aggregated by sub-national administrative districts [Dataset]. https://data.apps.fao.org/map/catalog/us/search?keyword=administrative%20districts
    Explore at:
    Dataset updated
    Sep 15, 2020
    Description

    Agro-MAPS consists of selected agricultural land-use statistics (crop production, area harvested and crop yield) aggregated by sub-national administrative districts for selected years. The full Agro-MAPS database currently contains data for 134 countries - 130 countries at admin1 level; 59 countries at admin2 level. These countries represent 92% of the world land surface. Users can interactively query and display Agro-MAPS data as maps, for a given country or region (Africa, Asia, North America, Latin America & the Caribbean, Asia, Near East in Asia, Oceania).

  17. r

    WALI PROD MAP

    • opendata.rcmrd.org
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QSpatial Live (2018). WALI PROD MAP [Dataset]. https://opendata.rcmrd.org/maps/7e384c85fd304e2d9dd24cdec7d924e6
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    QSpatial Live
    Area covered
    Description

    The Queensland Department of Agriculture and Fisheries (DAF) completed an Agricultural Land Audit in May 2013. This was a desktop exercise using existing datasets to map the current and potential agricultural land uses across the state. This web map shows mapping from the Land Audit with supporting data sets. The data is intended for use at a regional scale and should not be used at property level. It is an information tool only and not for statutory use. Refer to https://www.daf.qld.gov.au/business-priorities/environment/ag-land-audit for further information about the Agricultural Land Audit. The Land Audit technical report https://www.daf.qld.gov.au/_data/assets/pdf_file/0003/74829/QALA-tech-report-final-13.pdf explains criteria used to map 'potential' agricultural areas, datasets used to show current agriculture and techniques used to identify 'Important Agricultural Areas'.

  18. Z

    Data from: Landsat-derived annual maps of agricultural greenhouse in...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tingting Zhang (2021). Landsat-derived annual maps of agricultural greenhouse in Shandong province, China from 1989 to 2018 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5633604
    Explore at:
    Dataset updated
    Nov 1, 2021
    Dataset provided by
    Quanlong Feng
    Zhenrong Du
    Tingting Zhang
    Cong Ou
    Bowen Niu
    Dehai Zhu
    Jianyu Yang
    Yiming Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Shandong, China
    Description

    Using 8,450 Landsat images on the Google Earth Engine, we built the first Landsat-derived annual maps of agricultural greenhouse (AG) in Shandong province, China from 1989 to 2018. Two types of reference datasets, including AG and Non-AG, were labeled via visual inspection of high-resolution imagery available in Google Earth or Landsat imagery based on a 10 km grid sampling structure. The mapping window for each year was selected based on the vegetation growth and the phenological information. Classification for each year was carried out initially based on the random forest classifier after the feature optimization. A temporal consistency correction algorithm based on classification probability was then proposed to the classified AG maps for further improvement.

  19. I

    Data for: Probabilistic global maps of crop-specific areas from 1961 to 2014...

    • databank.illinois.edu
    • aws-databank-alb.library.illinois.edu
    Updated Aug 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicole Jackson; Megan Konar; Peter Debaere; Lyndon Estes (2019). Data for: Probabilistic global maps of crop-specific areas from 1961 to 2014 [Dataset]. http://doi.org/10.13012/B2IDB-7439710_V1
    Explore at:
    Dataset updated
    Aug 28, 2019
    Authors
    Nicole Jackson; Megan Konar; Peter Debaere; Lyndon Estes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Dataset funded by
    U.S. National Science Foundation (NSF)
    Description

    Agriculture has substantial socioeconomic and environmental impacts that vary between crops. However, information on how the spatial distribution of specific crops has changed over time across the globe is relatively sparse. We introduce the Probabilistic Cropland Allocation Model (PCAM), a novel algorithm to estimate where specific crops have likely been grown over time. Specifically, PCAM downscales annual and national-scale data on the crop-specific area harvested of 17 major crops to a global 0.5-degree grid from 1961-2014. The resulting database presented here provides annual global gridded likelihood estimates of crop-specific areas. Both mean and standard deviations of grid cell fractions are available for each of the 17 crops. Each netCDF file contains an individual year of data with an additional variable ("crs") that defines the coordinate reference system used. Our results provide new insights into the likely changes in the spatial distribution of major crops over the past half-century. For additional information, please see the related paper by Jackson et al. (2019) in Environmental Research Letters (https://doi.org/10.1088/1748-9326/ab3b93).

  20. Z

    Agricultural land use (vector) : National-scale crop type maps for Germany...

    • data.niaid.nih.gov
    • openagrar.de
    • +1more
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blickensdörfer, Lukas (2025). Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10621628
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    Tetteh, Gideon Okpoti
    Blickensdörfer, Lukas
    Erasmi, Stefan
    Gocht, Alexander
    Schwieder, Marcel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains a map of the main classes of agricultural land use (dominant crop types and other land use types) in Germany for the year 2022. It complements a series of maps that are produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015). The final post-processing step comprises the aggregation of the gridded data to homogeneous objects (fields) based on the approach that is described in Tetteh et al. (2021) and Tetteh et al. (2023).

    The maps are available in FlatGeobuf format, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the URL to the datasets that will be provided on request. By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    Mailing list

    If you do not want to miss the latest updates, please enroll to our mailing list.

    References:Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Tetteh, G.O., Gocht, A., Erasmi, S., Schwieder, M., & Conrad, C. (2021). Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 9, 116702-116719.

    Tetteh, G.O., Schwieder, M., Erasmi, S., Conrad, C., & Gocht, A. (2023). Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hawaii Statewide GIS Program (2013). Agricultural Land Use Maps (ALUM) [Dataset]. https://kauai-open-data-kauaigis.hub.arcgis.com/datasets/HiStateGIS::agricultural-land-use-maps-alum

Agricultural Land Use Maps (ALUM)

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 15, 2013
Dataset authored and provided by
Hawaii Statewide GIS Program
Area covered
Description

[Metadata] Description: Agricultural Land Use Maps (ALUM) for islands of Kauai, Oahu, Maui, Molokai, Lanai and Hawaii as of 1978-1980. Sources: State Department of Agriculture; Hawaii Statewide GIS Program, Office of Planning. Note: August, 2018 - Corrected one incorrect record, removed coded value attribute domain.For more information on data sources and methodologies used, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/alum.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

Search
Clear search
Close search
Google apps
Main menu