As of February 2025, 37.5 percent of X’s (formerly Twitter) global audience was aged between 25 and 34 years. The second-largest age group demographic on the platform was represented by users aged between 18 and 24 years, with a share of 32.1 percent. Users aged less than 18 years accounted for two percent of users, while those aged 50 or older accounted for roughly 7.3 percent. X is a male-dominated platform As of January 2024, more than 60 percent of X users were male. Although all mainstream social media platforms tend to have a slightly more male-skewing audience, X stands out above Instagram, Snapchat, TikTok, and Facebook when it comes to user gender demographics. Overall, Pinterest is the only mainstream platform to have a higher share of female users. X Blue for you It is not uncommon for social media users to now have the chance to become subscribers of their chosen online networks for a monthly fee. X Blue is a subscription service from X that gives users special benefits and features. A blue verification mark, edit post functionality, fewer ads, priority ranking in chats, and longer video upload times are some of the perks offered.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the breakdown of Twitter users by age group.
As of February 2025, 24.5 percent of X (formerly Twitter) users were men aged between 25 and 34 years. Overall, almost 19 percent of users were men aged between 18 and 24 years. X has a high share of male users when compared to other popular social media platforms.
As of September 2023, it was found that 42 percent of adults in the United States aged between 18 and 29 years used X (formerly Twitter). This age group was the microblogging service’s biggest audience in the United States, followed by a 27 percent usage reach among 30 to 49-year-olds. X users in the United StatesAs of the first quarter of 2019, Twitter had 68 million monthly active users in the United States. In the fourth quarter of 2020, the number of monetizable daily active Twitter users in the country amounted to 37 million. As of January 2021, 61.6 percent of U.S. Twitter audiences were male and 38.4 percent were female. According to a February 2019 survey of social media users in the United States, Twitter was the most popular social network for news consumption. X usage in the United StatesTwitter is popular among users looking to catch up and chime in on current and trending topics and live-tweet about events and media. Live-tweeting television series or sporting events is a popular user activity and in 2018, the most popular television series based on average number of Twitter interactions per episode was ABC’s ‘The Bachelor’. In terms of global sporting events, it does not get much bigger than the Olympic Games. During the Winter Olympics in PyeongChang 2018, Twitter accounted for 50 percent of stakeholder posts during the Winter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number of unique Twitter users identified from birthday tweets by age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Top predictive features for each age group in tweet language use and Twitter handle metadata models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the key Twitter user statistics that you need to know.
According to an online survey conducted in the United States in May 2021, 59 percent of infrequent tweeters were aged between 30 to 49 years, whilst 20 percent were aged between 50 to 64 years. Additionally, 41 percent of frequent tweeters belonged to the 18 to 29 year age group, and 32 percent were aged 30 to 49 years. Infrequent tweeters are users of Twitter who post less than five times per month on average.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
As of February 2025, micro-blogging platform X (formerly Twitter) was more popular with men than women, with male audiences accounting for 63.7 percent of global users. Additionally, users between the ages of 25 and 34 were particularly active on X/Twitter, making up more than 37 percent of users worldwide. How many people use? Although X/Twitter holds its status as a mainstream social media site, it falls short in comparison to other well-known platforms in terms of user numbers. As of early 2022, X/Twitter had around 436 million monthly active users, whilst Meta’s Facebook reached almost three billion MAU. Overall, the United States is home to over 105 million X/Twitter users, making up Twitter’s largest audience base, followed by Japan, India, and the United Kingdom, respectively. How is Twitter used? X/Twitter is utilized by its audience for many different purposes. In May 2021, over 80 percent of high-volume X/Twitter users (defined as users who tweet around 20 times per month) in the United States reported using the platform for entertainment, whilst 78 percent said they used it as a way to stay informed. High-volume X/Twitter users were far more likely to use the service as a means of expressing their opinion. Furthermore, in 2022, over half of social media users in the U.S. used Twitter as a news resource.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The platform is male-dominated with 68.1% of all Twitter users being male. Just 31.9% of Twitter users are female.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These Twitter user statistics will give you the complete story of where Twitter is at today and what the future looks like for the social media company.
This statistic illustrates the share of people who regularly useTwitter in the United States in 2022. The results were sorted by age. In 2022, 34 percent of respondents aged 18 to 29 years stated they regularly use Twitter.
This statistic shows the results of the survey on Twitter users in Sweden in the first and third quarter of 2020, broken down by age group. Those aged 16 to 25 years used Twitter the most with 44 percent of individuals in this age group using the social media platform. Twitter appears to be more popular among the younger generations (up to 45 years old). Twitter usage declined significantly among older users, with only three percent of those aged 76 and older claiming they used the platform.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Feature set developed to support "Predicting Age Groups of Twitter Users Based on Language and Metadata Features" by Morgan-Lopez et al. (2017). The feature set encompasses candidate variables for each of the four models referenced in the paper ("Tweet Language Only","Twitter Handle Metadata Only","Tweet Language Use and Handle Metadata", and "WWBP Words"). Description of target variables listed below -- for further description of features and methodology please reference manuscript.Target Variablesage_cat: User age category {"1" : 13-17, "2" : 18-24, "3" : 25-50} age_cat_sen: User age category used for sensitivity analysis {"1" : 13-17, "2" : 18-29, "3" : 30-50}user_age: User ageOtherrand_id: Random ID assigned to Twitter user
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset contains the estimated demographics of 3,775,014 Twitter users in the continental USA in 2014, including gender, age, race/ethnicity, and county of residence of each Twitter user. The codes for estimating Twitter user demographics were also enclosed; the codes were designed for analyzing raw Twitter data with user profile information including username, screen name, profile image, and geo-locations. Twitter users were anonymized to protect their privacy per the data user agreement of Twitter, Inc. Twitter users in the shared data set were anonymized.
Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
36.6% of Twitter users are aged 25-34 and make up the biggest age group on the platform. Only 2.4% of Twitter users are aged 13-17.
As of February 2025, 37.5 percent of X’s (formerly Twitter) global audience was aged between 25 and 34 years. The second-largest age group demographic on the platform was represented by users aged between 18 and 24 years, with a share of 32.1 percent. Users aged less than 18 years accounted for two percent of users, while those aged 50 or older accounted for roughly 7.3 percent. X is a male-dominated platform As of January 2024, more than 60 percent of X users were male. Although all mainstream social media platforms tend to have a slightly more male-skewing audience, X stands out above Instagram, Snapchat, TikTok, and Facebook when it comes to user gender demographics. Overall, Pinterest is the only mainstream platform to have a higher share of female users. X Blue for you It is not uncommon for social media users to now have the chance to become subscribers of their chosen online networks for a monthly fee. X Blue is a subscription service from X that gives users special benefits and features. A blue verification mark, edit post functionality, fewer ads, priority ranking in chats, and longer video upload times are some of the perks offered.