Facebook
TwitterThis statistic depicts the age distribution of India from 2013 to 2023. In 2023, about 25.06 percent of the Indian population fell into the 0-14 year category, 68.02 percent into the 15-64 age group and 6.92 percent were over 65 years of age. Age distribution in India India is one of the largest countries in the world and its population is constantly increasing. India’s society is categorized into a hierarchically organized caste system, encompassing certain rights and values for each caste. Indians are born into a caste, and those belonging to a lower echelon often face discrimination and hardship. The median age (which means that one half of the population is younger and the other one is older) of India’s population has been increasing constantly after a slump in the 1970s, and is expected to increase further over the next few years. However, in international comparison, it is fairly low; in other countries the average inhabitant is about 20 years older. But India seems to be on the rise, not only is it a member of the BRIC states – an association of emerging economies, the other members being Brazil, Russia and China –, life expectancy of Indians has also increased significantly over the past decade, which is an indicator of access to better health care and nutrition. Gender equality is still non-existant in India, even though most Indians believe that the quality of life is about equal for men and women in their country. India is patriarchal and women still often face forced marriages, domestic violence, dowry killings or rape. As of late, India has come to be considered one of the least safe places for women worldwide. Additionally, infanticide and selective abortion of female fetuses attribute to the inequality of women in India. It is believed that this has led to the fact that the vast majority of Indian children aged 0 to 6 years are male.
Facebook
TwitterThe growth in India's overall population is driven by its young population. Nearly ** percent of the country's population was between the ages of 15 and 64 years old in 2020. With over *** million people between 18 and 35 years old, India had the largest number of millennials and Gen Zs globally.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.
This dataset contains the population distribution by state, gender, sex & region.
The file is in .csv format thus it is accessible everywhere.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides a comprehensive overview of the demographic trends and population statistics of India. It includes various aspects of the population, such as total population figures, gender distribution, religious composition, linguistic diversity, and age group breakdowns. The dataset aims to facilitate research and analysis in the fields of sociology, economics, and public policy by offering valuable insights into the demographic dynamics of India.
Key Features: - Census Data: Detailed population statistics based on census years, including total population, male and female counts, and differences between genders. - Religious Demographics: Information on the population distribution among different religions, along with percentages. - Language Distribution: Data on the number of speakers for various languages in India and their corresponding percentages. - Vital Statistics: Key indicators such as live births, deaths, natural changes, crude birth rates, and total fertility rates. - Age Distribution: Breakdown of the population by age group, including gender-specific counts and percentages.
Purpose: This dataset serves as a valuable resource for researchers, policymakers, and educators interested in understanding the demographic landscape of India. It can be used for various analyses, including population growth trends, gender ratios, and the impact of cultural diversity on the social fabric of the nation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The changing population age structure has a significant influence on the economy, society, and numerous other aspects of a country. This paper has innovatively applied the method of compositional data forecasting for the prediction of population age changes of the young (aged 0–14), the middle-aged (aged 15–64), and the elderly (aged older than 65) in China, India, and Vietnam by 2030 based on data from 1960 to 2016. To select the best-suited forecasting model, an array of data transformation approaches and forecasting models have been extensively employed, and a large number of comparisons have been made between the aforementioned methods. The best-suited model for each country is identified considering the root mean squared error and mean absolute percent error values from the compositional data. As noted in this study, first and foremost, it is predicted that by the year 2030, China will witness the disappearance of population dividend and get mired in an aging problem far more severe than that of India or Vietnam. Second, Vietnam’s trend of change in population age structure resembles that of China, but the country will sustain its good health as a whole. Finally, the working population of India demonstrates a strong rising trend, indicating that the age structure of the Indian population still remains relatively “young”. Meanwhile, the continuous rise in the proportion of elderly population and the gradual leveling off growth of the young population have nevertheless become serious problems in the world. The present paper attempts to offer crucial insights into the Asian population size, labor market and urbanization, and, moreover, provides suggestions for a sustainable global demographic development.
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the All-India, gender and age-group wise distribution of population for each census year.
Facebook
TwitterThe percentage distribution for population projections for the age groups * to * reflected a decrease in the year 2036 in comparison to 2011. This could be attributed to the projected declining fertility rates in the country. By contrast, the age groups from 40-44 to **+ reflected an increase in the population projections in 2036 when compared with 2011. This projected increase in geriatric population within the country could be attributed to advancements made in the field of medical sciences, biotechnology and improved health care.
Facebook
TwitterThe median age in India was 27 years old in 2020, meaning half the population was older than that, half younger. This figure was lowest in 1970, at 18.1 years, and was projected to increase to 47.8 years old by 2100. Aging in India India has the second largest population in the world, after China. Because of the significant population growth of the past years, the age distribution remains skewed in favor of the younger age bracket. This tells a story of rapid population growth, but also of a lower life expectancy. Economic effects of a young population Many young people means that the Indian economy must support a large number of students, who demand education from the economy but cannot yet work. Educating the future workforce will be important, because the economy is growing as well and is one of the largest in the world. Failing to do this could lead to high youth unemployment and political consequences. However, a productive and young workforce could provide huge economic returns for India.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here. Data and Resources TIFF India - Population density (2015) DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid...
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the all-India and decade-wise population distribution by broad age groups. Three broad age groups are categorized here: 0-14; 15-59 and Above 60.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecasting Results of the population structures for China, India, and Vietnam (Unit: %).
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The data shows the distribution of population by age group by gender particularly into two categories population in the age group 0 to 6 and population aged 7 years and above for the states and union territories in India according to the 2011 census.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Indian Wells population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Indian Wells. The dataset can be utilized to understand the population distribution of Indian Wells by age. For example, using this dataset, we can identify the largest age group in Indian Wells.
Key observations
The largest age group in Indian Wells, CA was for the group of age 55-59 years with a population of 708 (14.67%), according to the 2021 American Community Survey. At the same time, the smallest age group in Indian Wells, CA was the 0-4 years with a population of 39 (0.81%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indian Wells Population by Age. You can refer the same here
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The 16th Census of India is going to be taken in 2021 (Might suffer delay due to the pandemic). And thus, we can analyse and compare the growth and distribution of population in our country since the last census (15th Census of India - 2011).
Original Repository (and Mining Scripts) can be found here. All data was collected from the website for the Office of the Registrar General & Census Commissioner, India
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 333 cities in the Massachusetts by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterRural India was mainly made up of men and women between 15 and 59 years old in 2020. Compared to urban centers, children up to ages ** had a higher share in rural areas during the same time period.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
White noise tests for error series of three age periods for China, India and Vietnam.
Facebook
TwitterThe share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly ** percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than *** percent during the same time period.
Why project population?
Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.
Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides comprehensive census data at the district level for India. It includes detailed demographic, religious, educational, and workforce-related attributes, making it a rich resource for socio-economic analysis.
District_code: A unique numeric code for each district. State_name: Name of the state to which the district belongs. District_name: Name of the district.
Population: Total population of the district. Male: Total male population in the district. Female: Total female population in the district.
Literate: Total number of literate individuals in the district.
Workers: Total number of workers in the district. Male_Workers: Total number of male workers in the district. Female_Workers: Total number of female workers in the district. Cultivator_Workers: Number of workers engaged as cultivators. Agricultural_Workers: Number of workers engaged in agricultural labor. Household_Workers: Number of workers engaged in household industries.
Hindus: Total number of Hindus in the district. Muslims: Total number of Muslims in the district. Christians: Total number of Christians in the district. Sikhs: Total number of Sikhs in the district. Buddhists: Total number of Buddhists in the district. Jains: Total number of Jains in the district.
Secondary_Education: Number of individuals with secondary education. Higher_Education: Number of individuals with higher education qualifications. Graduate_Education: Number of individuals with graduate-level education.
Age_Group_0_29: Population in the age group 0–29 years. Age_Group_30_49: Population in the age group 30–49 years. Age_Group_50: Population aged 50 years and above.
Number of Districts: 640 Number of Columns: 25 Non-null Values: All columns are complete with no missing data. Detailed breakdown of population by gender, age group, literacy levels, and workforce distribution. Religious composition and education statistics are also included for each district.
Data Analysis and Visualization:
Explore patterns in population distribution, literacy rates, workforce composition, and religious demographics. Machine Learning Applications:
Build predictive models to classify districts or forecast demographic trends. Social Research:
Investigate correlations between education levels, workforce participation, and religion. Policy Planning:
Help policymakers target specific demographics or regions for intervention. Educational Insights:
Analyze the impact of education levels on workforce participation or literacy.
Total Rows: 640 Total Columns: 25 This dataset provides a unique opportunity to understand India's socio-economic and demographic composition at a granular district level.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 5th Edition (1978 to 1995) of the National Atlas of Canada is a map that shows distribution of Indians and Inuit using several types of symbols to represent population in 1976.
Facebook
TwitterThis statistic depicts the age distribution of India from 2013 to 2023. In 2023, about 25.06 percent of the Indian population fell into the 0-14 year category, 68.02 percent into the 15-64 age group and 6.92 percent were over 65 years of age. Age distribution in India India is one of the largest countries in the world and its population is constantly increasing. India’s society is categorized into a hierarchically organized caste system, encompassing certain rights and values for each caste. Indians are born into a caste, and those belonging to a lower echelon often face discrimination and hardship. The median age (which means that one half of the population is younger and the other one is older) of India’s population has been increasing constantly after a slump in the 1970s, and is expected to increase further over the next few years. However, in international comparison, it is fairly low; in other countries the average inhabitant is about 20 years older. But India seems to be on the rise, not only is it a member of the BRIC states – an association of emerging economies, the other members being Brazil, Russia and China –, life expectancy of Indians has also increased significantly over the past decade, which is an indicator of access to better health care and nutrition. Gender equality is still non-existant in India, even though most Indians believe that the quality of life is about equal for men and women in their country. India is patriarchal and women still often face forced marriages, domestic violence, dowry killings or rape. As of late, India has come to be considered one of the least safe places for women worldwide. Additionally, infanticide and selective abortion of female fetuses attribute to the inequality of women in India. It is believed that this has led to the fact that the vast majority of Indian children aged 0 to 6 years are male.