As of January 2025, 24.2 percent of Facebook users in the United States were aged between 25 and 34 years, making up Facebook’s largest audience in the country. Overall, 19 percent of users belonged to the 18 to 24-year age group. Does everyone in the U.S. use Facebook? In 2023, there were approximately 247 million Facebook users in the U.S., a figure which is projected to steadily increase, and reach 262.8 million by 2028. Social media users in the United States have a very high awareness of the social media giant. Expectedly, 94 percent of users had heard of the brand in 2023. Although the vast majority of U.S. social networkers knew of Facebook, the likeability of the platform was not so impressive at 68 percent. Nonetheless, usage, loyalty, and buzz around the brand remained relatively high. Facebook, Meta, and the metaverse A strategic rebranding from Facebook to Meta Platforms in late 2021 boded well for the company in Mark Zuckerberg’s attempt to be strongly linked to the metaverse, and to be considered more than just a social media company. According to a survey conducted in the U.S. in early 2022, Meta Platforms is the brand that Americans most associated with the metaverse.
As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.
Facebook connects the world
Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
The Controllable Multimodal Feedback Synthesis (CMFeed) Dataset is designed to enable the generation of sentiment-controlled feedback from multimodal inputs, including text and images. This dataset can be used to train feedback synthesis models in both uncontrolled and sentiment-controlled manners. Serving a crucial role in advancing research, the CMFeed dataset supports the development of human-like feedback synthesis, a novel task defined by the dataset's authors. Additionally, the corresponding feedback synthesis models and benchmark results are presented in the associated code and research publication.
Task Uniqueness: The task of controllable multimodal feedback synthesis is unique, distinct from LLMs and tasks like VisDial, and not addressed by multi-modal LLMs. LLMs often exhibit errors and hallucinations, as evidenced by their auto-regressive and black-box nature, which can obscure the influence of different modalities on the generated responses [Ref1; Ref2]. Our approach includes an interpretability mechanism, as detailed in the supplementary material of the corresponding research publication, demonstrating how metadata and multimodal features shape responses and learn sentiments. This controllability and interpretability aim to inspire new methodologies in related fields.
Data Collection and Annotation
Data was collected by crawling Facebook posts from major news outlets, adhering to ethical and legal standards. The comments were annotated using four sentiment analysis models: FLAIR, SentimentR, RoBERTa, and DistilBERT. Facebook was chosen for dataset construction because of the following factors:
• Facebook was chosen for data collection because it uniquely provides metadata such as news article link, post shares, post reaction, comment like, comment rank, comment reaction rank, and relevance scores, not available on other platforms.
• Facebook is the most used social media platform, with 3.07 billion monthly users, compared to 550 million Twitter and 500 million Reddit users. [Ref]
• Facebook is popular across all age groups (18-29, 30-49, 50-64, 65+), with at least 58% usage, compared to 6% for Twitter and 3% for Reddit. [Ref]. Trends are similar for gender, race, ethnicity, income, education, community, and political affiliation [Ref]
• The male-to-female user ratio on Facebook is 56.3% to 43.7%; on Twitter, it's 66.72% to 23.28%; Reddit does not report this data. [Ref]
Filtering Process: To ensure high-quality and reliable data, the dataset underwent two levels of filtering:
a) Model Agreement Filtering: Retained only comments where at least three out of the four models agreed on the sentiment.
b) Probability Range Safety Margin: Comments with a sentiment probability between 0.49 and 0.51, indicating low confidence in sentiment classification, were excluded.
After filtering, 4,512 samples were marked as XX. Though these samples have been released for the reader's understanding, they were not used in training the feedback synthesis model proposed in the corresponding research paper.
Dataset Description
• Total Samples: 61,734
• Total Samples Annotated: 57,222 after filtering.
• Total Posts: 3,646
• Average Likes per Post: 65.1
• Average Likes per Comment: 10.5
• Average Length of News Text: 655 words
• Average Number of Images per Post: 3.7
Components of the Dataset
The dataset comprises two main components:
• CMFeed.csv File: Contains metadata, comment, and reaction details related to each post.
• Images Folder: Contains folders with images corresponding to each post.
Data Format and Fields of the CSV File
The dataset is structured in CMFeed.csv file along with corresponding images in related folders. This CSV file includes the following fields:
• Id: Unique identifier
• Post: The heading of the news article.
• News_text: The text of the news article.
• News_link: URL link to the original news article.
• News_Images: A path to the folder containing images related to the post.
• Post_shares: Number of times the post has been shared.
• Post_reaction: A JSON object capturing reactions (like, love, etc.) to the post and their counts.
• Comment: Text of the user comment.
• Comment_like: Number of likes on the comment.
• Comment_reaction_rank: A JSON object detailing the type and count of reactions the comment received.
• Comment_link: URL link to the original comment on Facebook.
• Comment_rank: Rank of the comment based on engagement and relevance.
• Score: Sentiment score computed based on the consensus of sentiment analysis models.
• Agreement: Indicates the consensus level among the sentiment models, ranging from -4 (all negative) to 4 (all positive). 3 negative and 1 positive will result into -2 and 3 positives and 1 negative will result into +2.
• Sentiment_class: Categorizes the sentiment of the comment into 1 (positive) or 0 (negative).
More Considerations During Dataset Construction
We thoroughly considered issues such as the choice of social media platform for data collection, bias and generalizability of the data, selection of news handles/websites, ethical protocols, privacy and potential misuse before beginning data collection. While achieving completely unbiased and fair data is unattainable, we endeavored to minimize biases and ensure as much generalizability as possible. Building on these considerations, we made the following decisions about data sources and handling to ensure the integrity and utility of the dataset:
• Why not merge data from different social media platforms? We chose not to merge data from platforms such as Reddit and Twitter with Facebook due to the lack of comprehensive metadata, clear ethical guidelines, and control mechanisms—such as who can comment and whether users' anonymity is maintained—on these platforms other than Facebook. These factors are critical for our analysis. Our focus on Facebook alone was crucial to ensure consistency in data quality and format.
• Choice of four news handles: We selected four news handles—BBC News, Sky News, Fox News, and NY Daily News—to ensure diversity and comprehensive regional coverage. These news outlets were chosen for their distinct regional focuses and editorial perspectives: BBC News is known for its global coverage with a centrist view, Sky News offers geographically targeted and politically varied content learning center/right in the UK/EU/US, Fox News is recognized for its right-leaning content in the US, and NY Daily News provides left-leaning coverage in New York. Many other news handles such as NDTV, The Hindu, Xinhua, and SCMP are also large-scale but may contain information in regional languages such as Indian and Chinese, hence, they have not been selected. This selection ensures a broad spectrum of political discourse and audience engagement.
• Dataset Generalizability and Bias: With 3.07 billion of the total 5 billion social media users, the extensive user base of Facebook, reflective of broader social media engagement patterns, ensures that the insights gained are applicable across various platforms, reducing bias and strengthening the generalizability of our findings. Additionally, the geographic and political diversity of these news sources, ranging from local (NY Daily News) to international (BBC News), and spanning political spectra from left (NY Daily News) to right (Fox News), ensures a balanced representation of global and political viewpoints in our dataset. This approach not only mitigates regional and ideological biases but also enriches the dataset with a wide array of perspectives, further solidifying the robustness and applicability of our research.
• Dataset size and diversity: Facebook prohibits the automatic scraping of its users' personal data. In compliance with this policy, we manually scraped publicly available data. This labor-intensive process requiring around 800 hours of manual effort, limited our data volume but allowed for precise selection. We followed ethical protocols for scraping Facebook data , selecting 1000 posts from each of the four news handles to enhance diversity and reduce bias. Initially, 4000 posts were collected; after preprocessing (detailed in Section 3.1), 3646 posts remained. We then processed all associated comments, resulting in a total of 61734 comments. This manual method ensures adherence to Facebook’s policies and the integrity of our dataset.
Ethical considerations, data privacy and misuse prevention
The data collection adheres to Facebook’s ethical guidelines [<a href="https://developers.facebook.com/terms/"
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Purpose For the purpose of informing tobacco intervention programs, this dataset was created and used to explore how online social networks of smokers differed from those of nonsmokers. The study was a secondary analysis of data collected as part of a randomized control trial conducted within Facebook. (See "Other References" in "Metadata" for parent study information.) Basic description of 4 anonymized data files of study participants. fbr_friends: Anonymized Facebook friends networks, basic ego demographics, basic ego social media activity fbr_family: Anonymized Facebook family networks, basic ego demographics, basic ego social media activity fbr_photos: Anonymized Facebook photo networks, basic ego demographics, basic ego social media activity fbr_groups: Anonymized Facebook group networks, basic ego demographics, basic ego social media activity Each network comprises the ego, the ego's first degree connections, and the (second degree) connections between the ego's friends. Missing data and users who did not have friend, family, photo, or group networks were cleaned from the data beforehand. Each data file contains the following columns of data, taken with participant knowledge and consent participant_id: Nonidentifying ids assigned to different study participants. is_smoker: Binary value (0,1) that takes on the value 1 if participant was a smoker and 0 otherwise. gender: One of three categories: male, female, or blank, which signified Other (different from missing data). country: One of four categories: Canada (ca), US (us), Mexico (mx), or Other (xx). likes_count: Numeric data indicating number of Facebook likes the participant had made up to the date the data was collected. wall_count: Numeric data indicating number of Facebook wall posts the participant had made up to the date the data was collected. t_count_page_views: Numeric data indicating number of pages participant had visited in the UbiQUITous app up to the date the data was collected. yearsOld: Numeric data indicating age in years of the participant; right censored at 90 years for data anonymity. vertices: Number of people in the participant's network. edges: Number of connections between people in the network. density: The portion of potential connections in a network that are actual connections; a network-level metric; calculated after removing ego and isolates. mean_betweenness_centrality: An average of the relative importance of all individuals within their own network; a network-level metric; calculated after removing ego and isolates. transitivity: The extent to which the relationship between two nodes in a network that are connected by an edge is transitive (calculated as the number of triads divided by all possible connections); a network-level metric; calculated after removing ego and isolates. mean_closeness: Average of how closely associated members are to one another; a network-level metric; calculated after removing ego and isolates. isolates2: Number of individuals with no connections other than to the ego; a network-level metric. diameter3: Maximum degree of separation between any two individuals in the network; a network-level metric; calculated after removing ego and isolates. clusters3: Number of subnetworks; a network-level metric; calculated after removing ego and isolates. communities3: Number of groups, sorted to increase dense connections within the group and decrease sparse connections outside it (i.e., to maximize modularity); a network-level metric; calculated after removing ego and isolates. modularity3: The strength of division of a network into communities (calculated as the fraction of ties between community members in excess of the expected number of ties within communities if ties were random); a network-level metric. Detailed information on network metrics in the associated manuscript: "An exploration of the Facebook social networks of smokers and non-smokers" by Fu, L, Jacobs MA, Brookover J, Valente TW, Cobb NK, and Graham AL.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for PANDA
Dataset Summary
PANDA (Perturbation Augmentation NLP DAtaset) consists of approximately 100K pairs of crowdsourced human-perturbed text snippets (original, perturbed). Annotators were given selected terms and target demographic attributes, and instructed to rewrite text snippets along three demographic axes: gender, race and age, while preserving semantic meaning. Text snippets were sourced from a range of text corpora (BookCorpus, Wikipedia, ANLI… See the full description on the dataset page: https://huggingface.co/datasets/facebook/panda.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
[dataset PLOS ONE Facebook paper.xlsx]. (XLSX)
As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.
Instagram users
With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
Instagram features
One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
As of the second quarter of 2021, Snapchat had 293 million daily active users.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a detailed analysis of emoji usage across various social media platforms. It captures how different emojis are used in different contexts, reflecting emotions, trends, and user demographics.
With emojis becoming a universal digital language, this dataset helps researchers, marketers, and data analysts explore how people express emotions online and identify patterns in social media communication.
📌 Key Features: 😊 Emoji Details: Emoji 🎭: The specific emoji used in a post, comment, or message. Context 💬: The meaning or emotion associated with the emoji (e.g., Happy, Love, Funny, Sad). Platform 🌐: The social media platform where the emoji was used (e.g., Facebook, Instagram, Twitter). 👤 User Demographics: User Age 🎂: Age of the user who posted the emoji (ranges from 13 to 65 years). User Gender 🚻: Gender of the user (Male/Female). 📈 Additional Insights: Emoji Popularity 🔥: Frequency of each emoji’s usage across platforms. Trends Over Time 📅: How emoji usage changes based on trends or events. Regional Usage Patterns 🌍: How different cultures and regions use emojis differently. 📊 Use Cases & Applications: 🔹 Understanding emoji trends across social media 🔹 Analyzing emotional expression through digital communication 🔹 Exploring demographic differences in emoji usage 🔹 Identifying platform-specific emoji preferences 🔹 Enhancing sentiment analysis models with emoji insights
⚠️ Important Note: This dataset is synthetically generated for educational and analytical purposes. It does not contain real user data but is designed to reflect real-world trends in emoji usage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Chad: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Algeria: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Egypt: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eating disorders (EDs) are a complex group of psychiatric conditions that involve dysfunctional eating patterns, nutritional alterations, and other comorbid psychopathologies. Some women with EDs may develop problematic internet use while they attempt to get information on dieting/weight control or get online support from people with similar problems. They may also drift toward tobacco smoking as a method to regulate their weight or to cope with their weight-related dysphoria. The occurrence of these conditions in EDs may prolong disease course and impede recovery. This study used structural equation modeling to investigate nutritional status (noted by body mass index, BMI), depression psychopathology, internet addiction (depicted by the Internet Addiction Test), Facebook addiction (depicted by the Bergen Facebook Addiction Scale), and smoking among 123 Spanish women diagnosed with EDs (mean age = 27.3 ± 10.6 years). History of hospitalization, marital status, age, and the level of education predicted BMI in certain ED groups. BMI did not predict depression, but it predicted internet addiction, Facebook addiction, and smoking in certain ED groups. Depression did not predict BMI, internet/Facebook addition, or smoking in any ED group. Some sociodemographic and clinical variables had indirect effects on depression, internet addiction, and Facebook addiction while age was the only variable expressing a direct effect on all outcome measures. Age, education, and history of prolonged treatment predicted smoking in certain ED patients. The findings signify that a considerable target for interventional strategies addressing nutritional and addictive problems in EDs would be women with high BMI, history of hospitalization, history of prolonged treatment, who are particularly young, single, and less educated. Replication studies in larger samples, which comprise various subtypes of EDs from both genders, are warranted to define the exact interaction among the addressed variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Cabo Verde: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Mauritius: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Togo: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Burkina Faso: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains individual details who committed suicide in Bangladesh during the Pandemic between February, 2020 to November, 2020. This dataset includes details of every individuals who committed suicide like personal details, family & social life, profession, financial condition, methods of committing suicide, location and weather info. The dataset is freely available. The major fields included in this dataset are: age group, age, gender, profession group, reason, method, suicide date & time, addiction status, mental status, economic condition, marital status, family details, academic qualification, weather. Apart from the above data this dataset also contains a CSV file of a Bengali wordcloud built on social media posts of the suicide victims.
The access to the dataset files is kept restricted. Fill the form (link in the References section) to request the data.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset contains three sections of data. All data files have been anonymised.
The first section contains quantitative and qualitative survey online results from 1485 participants across Australia. The survey recruited people aged 18 and over, who had previously used or currently used hormonal and/or non-hormonal contraception (including withdrawal and fertility awareness-based methods). A conversational level of English was required, and participants had (currently or in the past) a cervix. This criterion allowed for gender-diverse people to participate, and those who may have had a hysterectomy, if they wished to reflect back on past experiences. Only 16.7% of survey participants were over 45 years; most data came from participants 18-44 years. Survey participants reported a broad range of gender identities, sexual preferences, cultural backgrounds, child-bearing desires, and other demographics. For example, most survey participants identified as cis women, with 15% identifying as a gender other than cis woman. Survey data is stored as a single Excel file (.xlsx) and as a CSV file (.csv).
The survey was titled “Voice Your Contraception Experiences” and contained five sections: demographics and contraception use; satisfaction with current or most recent contraception method (including use of an adapted quantitative survey instrument); contraception healthcare experiences (including use of a quantitative survey instrument); reproductive autonomy (including use of an adapted quantitative survey instrument); and free text open-ended questions about the three preceding instruments, and about contraception influences and side effects. Demographic data collected included age, gender, sexual preferences, cultural background, education level, childbearing desires, existing chronic health conditions, and whether these influenced contraception use. Open-ended questions were used to explore in greater depth satisfaction, healthcare, autonomy, and experiences of contraception method/s including side effects experienced, as well as any consequences of these experiences. Aspects of a trans survey developed by Moseson et al (2020) such as more gender inclusive questions and overall language, as well as participant suggestions from trans communities in Australian Facebook groups were included in a separately distributed trans version of the survey.
The second and third sections of data are from 20 participants who elected to complete a body mapping session, and in-depth interview, respectively. The body mapping comprised a participant written timeline of contraception use so far, thinking about first use, switching and discontinuations, and significant events of physical/emotional/psychological importance connected to contraception use (saved as a text file, .txt). The body mapping session also included a verbal description and recap of this by the participant (transcribed and saved as a Word doc file, .docx), a body map (digital image, .tiff), and a body map summary by the participant (transcribed and saved as a Word doc file, .docx). The in-depth interviews are transcribed and stored as Word doc files (.docx). The second section also contains some comments made by participants during the body mapping sessions (transcribed and saved as Word doc files, .docx). 20 participants completed the timeline of contraception use, 18 completed the body mapping session, and 17 completed the in-depth interview. Data from partial completion of stage two was included in the analysis. Stage two participants were aged 18-39, with a median age of 28, corresponding with the age range of the majority of survey participants. Of total stage two participants, 20% had a gender identity other than woman, and 60% had sexual preference as non-heterosexual. Regarding cultural diversity and childbearing desires, 25% of stage two participants were of a cultural background not solely White, with 45% not wanting any, or any more children, respectively.
This dataset cannot be published openly due to ethics conditions. To discuss the research, please contact Susan Manners S.Manners@westernsydney.edu.au ORCID 0000-0002-9281-257X
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Guinea: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OVERVIEW
Title of Dataset: Urinary incontinence in female weightlifters
Reference: doi: 10.1371/journal.pone.0278376. PMID: 36449558; PMCID: PMC9710785.
Author Information
Name: Marianne Huebner
Institution: Michigan State University
Address: East Lansing, MI 48824
Period of data collection: 27 April – 20 May 2022
Geographic region of data collection: Online survey in USA with participants from 29 countries in IWF regions Africa, Asia, Europe, Oceania, PanAmerican
LIST OF FILES
Dataset: wlisi_zenodo.xlsx
Data dictionary: wlisi_meta.xlsx
METHODOLOGICAL INFORMATION
Description of methods used for collection/generation of data: The survey was distributed by the Master Committee of the International Weightlifting Federation (IWF) to the National Master Chairs. They then used email or social media to communicate the study to the women weightlifters. The Survey was available in four languages (English, German, French, Spanish), translated and tested by native speakers. In addition, the survey was advertised in weightlifting interest groups via Facebook and Instagram. The survey was administered online via Qualtrics (Provo, UT, USA).
Methods for processing the data: Data were downloaded from Qualtrics (Provo, UT, USA) to Excel and then pre-processed in the statistical software R v. 4.0.3. (https://www.r-project.org)
Variable formats (numeric, character) were checked and transformed, as appropriate.
Data quality checks: Exclusion criteria were younger than 30 years (n=1), missing age (n=1), currently pregnant (n=3). To account for the possibility of male participants missing responses to age of menstruation or prior pregnancies (n=15), were also excluded. Since the focus was on competitive weightlifters, missing response to age of first competition (n=34) or no snatch or clean and jerk in the last 6 months (n=14) were also exclusion criteria. This resulted in an analysis data set of 824 women. Univariate distributions were evaluated numerically and graphically.
DATA-SPECIFIC INFORMATION
As of January 2025, 24.2 percent of Facebook users in the United States were aged between 25 and 34 years, making up Facebook’s largest audience in the country. Overall, 19 percent of users belonged to the 18 to 24-year age group. Does everyone in the U.S. use Facebook? In 2023, there were approximately 247 million Facebook users in the U.S., a figure which is projected to steadily increase, and reach 262.8 million by 2028. Social media users in the United States have a very high awareness of the social media giant. Expectedly, 94 percent of users had heard of the brand in 2023. Although the vast majority of U.S. social networkers knew of Facebook, the likeability of the platform was not so impressive at 68 percent. Nonetheless, usage, loyalty, and buzz around the brand remained relatively high. Facebook, Meta, and the metaverse A strategic rebranding from Facebook to Meta Platforms in late 2021 boded well for the company in Mark Zuckerberg’s attempt to be strongly linked to the metaverse, and to be considered more than just a social media company. According to a survey conducted in the U.S. in early 2022, Meta Platforms is the brand that Americans most associated with the metaverse.