Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
Total first marriage rates and age-specific first marriage rates per 1,000 females, all marriages, by place of occurrence, 2000 to 2004.
This dataset contains California’s adolescent birth rate (ABR) by county, age group and race/ethnicity using aggregated years 2014-2016. The ABR is calculated as the number of live births to females aged 15-19 divided by the female population aged 15-19, multiplied by 1,000. Births to females under age 15 are uncommon and thus added to the numerator (total number of births aged 15-19) in calculating the ABR for aged 15-19. The categories by age group are aged 18-19 and aged 15-17; births occurring to females under aged 15 are added to the numerator for aged 15-17 in calculating the ABR for this age group. The race and ethnic groups in this table utilized five mutually exclusive race and ethnicity categories. These categories are Hispanic and the following Non-Hispanic categories of Multi-Race, Black, American Indian (includes Eskimo and Aleut), Asian and Pacific Islander (includes Hawaiian) combined, and White. Note that there are birth records with missing race/ethnicity or categorized as “Other” and not shown in the dataset but included in the ABR calculation overall.
Introduction
This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends.
Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years).
Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates.
Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period.
Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health.
Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group.
Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods.
Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of univariate regression fit between three age-at-death ratios and three demographic variables based on skeletal samples with three different numbers of adults (D20+).
The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS).
More specifically, the objectives of the TDHS are to:
Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements.
The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey.
MAIN RESULTS
Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education.
The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD.
One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual.
Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids.
By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey.
The population covered by the 1993 DHS is defined as the universe of all ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Sample survey data
The sample for the TDHS was designed to provide estimates of population and health indicators, including fertility and mortality rates for the nation as a whole, fOr urban and rural areas, and for the five major regions of the country. A weighted, multistage, stratified cluster sampling approach was used in the selection of the TDHS sample.
Sample selection was undertaken in three stages. The sampling units at the first stage were settlements that differed in population size. The frame for the selection of the primary sampling units (PSUs) was prepared using the results of the 1990 Population Census. The urban frame included provinces and district centres and settlements with populations of more than 10,000; the rural frame included subdistricts and villages with populations of less than 10,000. Adjustments were made to consider the growth in some areas right up to survey time. In addition to the rural-urban and regional stratifications, settlements were classified in seven groups according to population size.
The second stage of selection involved the list of quarters (administrative divisions of varying size) for each urban settlement, provided by the State Institute of Statistics (SIS). Every selected quarter was subdivided according tothe number of divisions(approximately 100 households)assigned to it. In rural areas, a selected village was taken as a single quarter, and wherever necessary, it was divided into subdivisions of approximately 100 households. In cases where the number of households in a selected village was less than 100 households, the nearest village was selected to complete the 100 households during the listing activity, which is described below.
After the selection of the secondary sampling units (SSUs), a household listing was obtained for each by the TDHS listing teams. The listing activity was carried out in May and June. From the household lists, a systematic random sample of households was chosen for the TDHS. All ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Face-to-face
Two questionnaires were used in the main fieldwork for the TDHS: the Household Questionnaire and the Individual Questionnaire for ever-married women of reproductive age. The questionnaires were based on the model survey instruments developed in the DHS program and on the questionnaires that had been employed in previous Turkish population and health surveys. The questionnaires were adapted to obtain data needed for program planning in Turkey during consultations with population and health agencies. Both questionnaires were developed in English and translated into Turkish.
a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, marital status and relationship to the head of household for each person listed as a household member
The 1997 Yemen Demographic Maternal and Child Health Survey (YDMCHS) is part of the worldwide Demographic and Health Surveys (DHS) program. The DHS program is designed to collect data on fertility, family planning and maternal and child health.
The YDMCHS-97 has the following objectives: 1. Provide policymakers and decisionmakers with a reliable database and analyses useful for policy choices and population programs, and provide researchers, other interested persons, and scholars with such data. 2. Update and expand the national population and health data base through collection of data which will allow the calculation of demographic rates, especially fertility rates, and infant and child mortality rates; 3. Analyse the direct and indirect factors which determine levels and trends of fertility. Indicators related to fertility will serve to elaborate plans for social and economic development; 4. Measure the level of contraceptive knowledge and practice by method, by rural and urban residence including some homogeneous governorates (Sana’a, Aden, Hadhramaut, Hodeidah, Hajjah and Lahj). 5. Collect quality data on family health: immunizations, prevalence and treatment of diarrhea and other diseases among children under five, prenatal visits, assistance at delivery and breastfeeding; 6. Measure the nutritional status of mothers and their children under five years (anthropometric measurements: weight and height); 7. Measure the level of maternal mortality at the national level. 8. Develop skills and resources necessary to conduct high-quality demographic and health surveys.
National
Sample survey data [ssd]
SAMPLE DESIGN
The 1997 YDMCHS was based on a national sample in order to provide estimates for general indicators for the following domains: Yemen as a whole, urban and rural areas (each as a separate domain), three ecological zones identified as Coastal, Mountainous, and Plateau and Desert, as well as governorates with a sample size of at least 500 completed cases. The survey sample was designed as a two-stage cluster sample of 475 enumeration areas (EA), 135 in urban areas and 340 in rural areas. The master sample, based on the 1994 census frame, was used as the frame for the 1997 YDMCHS. The population covered by the Yemen survey was the universe of all ever-married women age 15-49. The initial target sample was 10,000 completed interviews among eligible women, and the final sample was 10,414. In order to get this number of completed interviews, and using the response rate found in the 1991-92 YDMCHS survey, a total of 10,701 of the 11,435 potential households selected for the household sample were completed.
In each selected EA, a complete household listing operation took place between July and September 1997, and was undertaken by nineteen (19) field teams, taking into consideration the geographical closeness of the areas assigned to each team.
Note: See detailed description of sample design in APPENDIX B of the final survey report.
Face-to-face [f2f]
Two Questionnaires were used to collect survey data:
Household Questionnaire: The household questionnaire consists of two parts: a household schedule and a series of questions relating to the health and socioeconomic status of the household. The household schedule was used to list all usual household members. For each of the individuals included in the schedule, information was collected on the relationship to the household head, age, sex, marital status (for those 10 years and older), educational level (for those 6 years and older) and work status (for those 10 years and older). It also collects information on fertility, general mortality and child survival. The second part of the household questionnaire included questions on housing characteristics including the type of dwelling, location, materials used in construction, number of rooms, kitchen in use, main source of drinking water and health related aspects, lighting and toilet facilities, disposal of garbage, durable commodities, and assets, type of salt the household uses for cooking, and other related residential information.
Individual Questionnaire: The individual questionnaire was administered to all ever-married women age 15-49 years who were usual residents. It contained 10 sections on the followings topics: - Respondent's background - Reproduction - Family planning - Pregnancy and breastfeeding - Immunization and health - Birth preferences - Marriage and husband's background - Maternal mortality - Female circumcision - Height and weight
10,701 households, distributed between urban (3,008 households) and rural areas (7,693), households which were successfully interviewed in the 1997 YDMCHS. This represents a country-wide response rate of 98.2 percent (98.7 and 98.0 percent, respectively, for urban and rural areas).
A total of 11,158 women were identified as eligible to be interviewed. Questionnaires were completed for 10,414 women, which represents a response rate of 93.3 percent. The response rate in urban areas was 93 percent; and in rural areas it was 93.5 percent.
Note: See summarized response rates by place of residence in Table 1.1 of the final survey report.
The estimates from a sample surveys are affected by two types of errors: (1) non-sampling error, and (2) sampling error. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the YDMCHS-97 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the YDMCHS-97 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would have yielded results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistics in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the YDMCHS-97 sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the YDMCHS-97 is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearization method of variance estimate for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimate of more complex statistics such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX C of the final survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women and men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX D of the final survey report.
Background: Standard pediatric growth curves cannot be used to impute missing height or weight measurements in individual children. The Michaelis-Menten equation, used for characterizing substrate-enzyme saturation curves, has been shown to model growth in many organisms including nonhuman vertebrates. We investigated whether this equation could be used to interpolate missing growth data in children in the first three years of life and compared this interpolation to several common interpolation methods and pediatric growth models. Methods: We developed a modified Michaelis-Menten equation and compared expected to actual growth, first in a local birth cohort (N=97) and then in a large, outpatient, pediatric sample (N=14,695). Results: The modified Michaelis-Menten equation showed excellent fit for both infant weight (median RMSE: boys: 0.22kg [IQR:0.19; 90%<0.43]; girls: 0.20kg [IQR:0.17; 90%<0.39]) and height (median RMSE: boys: 0.93cm [IQR:0.53; 90%<1.0]; girls: 0.91cm [IQR:0...., Sources of data: Information on infants was ascertained from two sources: the STORK birth cohort and the STARR research registry. (1) Detailed methods for the STORK birth cohort have been described previously. In brief, a multiethnic cohort of mothers and babies was followed from the second trimester of pregnancy to the babies’ third birthday. Healthy women aged 18–42 years with a single-fetus pregnancy were enrolled. Households were visited every four months until the baby’s third birthday (nine baby visits), with the weight of the baby at each visit recorded in pounds. Medical charts were abstracted for birth weight and length. (2) STARR (starr.stanford.edu) contains electronic medical record information from all pediatric and adult patients seen at Stanford Health Care (Stanford, CA). STARR staff provided anonymized information (weight, height and age in days for each visit through age three years; sex; race/ethnicity) for all babies during the period 03/2013–01/2022 followed from bi..., Example R code for fitting weight and/or height data with the MME equation is shown in the MME_growth_fitting.RMD file. This file was written to fit the supplied STARR dataset. However, it can be adapted to alternative data. The HTML version of this file is available as well, in case viewing the script without opening it in R is desired. R_sessionInfo.txt contains the R software version, as well as the versions of the packages included in the code. See the methods section of the manuscript for the description of the starting parameters for the nls() function., # Data for: A modified Michaelis-Menten equation estimates growth from birth to 3 years in healthy babies in the US
Data for this study include, per baby: sex, age in days, and, over time, weight in Kg and height in cm. Each baby had at least 5 visits. Our goal was to fit each baby’s data to a curve as described by a modified Michaelis-Menten equation, allowing interpolation of missing weight or height values. Among the subset of all infants who had 7 well-baby visits in the first year of life, and 12 visits over 3 years, we further explored the minimum number of, and which, data points were necessary for good fit. Finally, among babies with 5 time points in year 1, and 2 in both year 2 and year 3, we examined whether weight or height data early in life could predict growth in later months.
To meet anonymization guidelines, we are providing only STARR data, including sex, age and jittered weight and height (for STORK data, STARR race/e...
The 1992 Namibia Demographic and Health Survey (NDHS) is a nationally representative survey conducted by the Ministry of Health and Social Services, assisted by the Central Statistical Office, with the aim of gathering reliable information on fertility, family planning, infant and child mortality, maternal mortality, maternal and child health and nutrition. Interviewers collected information on the reproductive histories of 5,421 women 15-49 years and on the health of 3,562 children under the age of five years.
The Namibia Demographic and Health Survey (NDHS) is a national sample survey of women of reproductive age designed to collect data on mortality and fertility, socioeconomic characteristics, marriage patterns, breastfeeding, use of contraception, immunisation of children, accessibility to health and family planning services, treatment of children during episodes of illness, and the nutritional status of women and children. More specifically, the objectives of NDHS are: - To collect data at the national level which will allow the calculation of demographic rates, particularly fertility rates and child mortality rates, and maternal mortality rates; To analyse the direct and indirect factors which determine levels and trends in fertility and childhood mortality, Indicators of fertility and mortality are important in planning for social and economic development; - To measure the level of contraceptive knowledge and practice by method, region, and urban/rural residence; - To collect reliable data on family health: immunisations, prevalence and treatment of diarrhoea and other diseases among children under five, antenatal visits, assistance at delivery and breastfeeding; - To measure the nutritional status of children under five and of their mothers using anthropometric measurements (principally height and weight).
MAIN RESULTS
According to the NDHS, fertility is high in Namibia; at current fertility levels, Namibian women will have an average of 5.4 children by the end of their reproductive years. This is lower than most countries in sub-Saharan Africa, but similar to results from DHS surveys in Botswana (4.9 children per woman) and Zimbabwe (5.4 children per woman). Fertility in the South and Central regions is considerably lower (4.1 children per woman) than in the Northeast (6.0) and Northwest regions (6.7).
About one in four women uses a contraceptive method: 29 percent of married women currently use a method (26 percent use a modem method), and 23 percent of all women are current users. The pill, injection and female sterilisation are the most popular methods among married couples: each is used by about 7 to 8 percent of currently married women. Knowledge of contraception is high, with almost 90 percent of all women age 15-49 knowing of any modem method.
Certain groups of women are much more likely to use contraception than others. For example, urban women are almost four times more likely to be using a modem contraceptive method (47 percent) than rural women (13 percent). Women in the South and Central regions, those with more education, and those living closer to family planning services are also more likely to be using contraception.
Levels of fertility and contraceptive use are not likely to change until there is a drop in desired family size and until the idea of reproductive choice is more widely accepted. At present, the average ideal family size (5.0 children) is only slightly lower than the total fertility rate (5.4 children). Thus, the vast majority of births are wanted.
On average, Namibian women have their first child when they are about 21 years of age. The median age at first marriage is, however, 25 years. This indicates that many women give birth before marriage. In fact, married women are a minority in Namibia: 51 percent of women 15-49 were not married, 27 percent were currently married, 15 percent were currently living with a man (informal union), and 7 percent were widowed, divorced or separated. Therefore, a large proportion of children in Namibia are born out of wedlock.
The NDHS also provides inlbrmation about maternal and child health. The data indicate that 1 in 12 children dies before the fifth birthday. However, infant and child mortality have been declining over the past decade. Infant mortality has fallen from 67 deaths per 1,000 live births for the period 1983-87 to 57 per 1,000 live births for the period 1988-92, a decline of about 15 percent. Mortality is higher in the Northeast region than elsewhere in Namibia.
The leading causes of death are diarrhoea, undemutrition, acute respiratory infection (pneumonia) and malaria: each of these conditions was associated with about one-fifth of under-five deaths. Among neonatal deaths low birth weight and birth problems were the leading causes of death. Neonatal tetanus and measles were not lbund to be major causes of death.
Maternal mortality was estimated from reports on the survival status of sisters of the respondent. Maternal mortality was 225 per 100,000 live births for the decade prior to the survey. NDHS data also show considerable excess male mortality at ages 15-49, which may in part be related to the war of independence during the 1980s.
Utilisation of maternal and child health services is high. Almost 90 percent of mothers received antenatal care, and two-thirds of children were bom in health facilities. Traditional birth attendants assisted only 6 percent of births in the five years preceding the survey. Child vaccination coverage has increased rapidly since independence. Ninety-five percent of children age 12-23 months have received at least one vaccination, while 76 percent have received a measles vaccination, and 70 percent three doses of DPT and polio vaccines.
Children with symptoms of possible acute respiratory infection (cough and rapid breathing) may have pneumonia and need to be seen by a health worker. Among children with such symptoms in the two weeks preceding the survey two-thirds were taken to a health facility. Only children of mothers who lived more than 30 km from a health facility were less likely to be taken to a facility.
About one in five children had diarrhoea in the two weeks prior to the survey. Diarrhoea prevalence was very high in the Northeast region, where almost half of children reportedly had diarrhoea. The dysentery epidemic contributed to this high figure: diarrhoea with blood was reported for 17 percent of children under five in the Northeast region. Among children with diarrhoea in the last two weeks 68 percent were taken to a health facility, and 64 percent received a solution prepared from ORS packets. NDHS data indicate that more emphasis needs to put on increasing fluids during diarrhoea, since only I 1 percent mothers of children with diarrhoea said they increased the amount of fluids given during the episode.
Nearly all babies are breastfed (95 percent), but only 52 percent are put on the breast immediately. Exclusive breastfeeding is practiced for a short period, but not for the recommended 4-6 months. Most babies are given water, formula, or other supplements within the first four months of life, which both jeopardises their nutritional status and increases the risk of infection. On average, children are breastfed for about 17 months, but large differences exist by region. In the South region children are breastfed lor less than a year, in the Northwest region for about one and a half years and in the Northeast region for almost two years.
Most babies are weighed at birth, but the actual birth weight could be recalled for only 44 percent of births. Using these data and data on reported size of the newborn, for all births in the last five years, it was estimated that the mean birth weight in Namibia is 3048 grams, and that 16 percent of babies were low birth weight (less than 2500 grams).
Stunting, an indication of chronic undemutrition, was observed for 28 percent of children under five. Stunting was more common in the Northeast region (42 percent) than elsewhere in Namibia. Almost 9 percent of children were wasted, which is an indication of acute undemutrition. Wasting is higher than expected for Namibia and may have been caused by the drought conditions during 1992.
Matemal height is an indicator of nutritional status over generations. Women in Namibia have an average height of 160 cm and there is little variation by region. The Body Mass Index (BM1), defined as weight divided by squared height, is a measure of current nutritional status and was lower among women in the Northwest and the Northeast regions than among women in the South and Central regions.
On average, women had a health facility available within 40 minutes travel time. Women in the Northwest region, however, had to travel more than one hour to reach the nearest health facility. At a distance of less than 10 km, 56 percent of women had access to antenatal services, 48 percent to maternity services, 72 percent to immunisation services, and 49 percent to family planning services. Within one hour of travel time, fifty-two percent of women had antenatal services, 48 percent delivery services, 64 percent immunisation services and 49 percent family planning services. Distance and travel time were greatest in the Northwest region.
The sample for the NDHS was designed to be nationally representative. The design involved a two- stage stratified sample which is self-weighting within each of the three health regions for which estimates of fertility and mortality were required--Northwest, Northeast, and the combined Central/South region. In order to have a sufficient number of cases for analysis, oversampling was necessary for the Northeast region, which has only 14.8 percent of the population. Therefore, the sample was not allocated proportionally across regions and is not completely
The JPFHS is part of the worldwide Demographic and Health Surveys (DHS) program, which is designed to collect data on fertility, family planning, and maternal and child health.
The 1990 Jordan Population and Family Health Survey (JPFHS) was carried out as part of the Demographic and Health Survey (DHS) program. The Demographic and Health Surveys is assisting governments and private agencies in the implementation of household surveys in developing countries.
The JPFIS was designed to provide information on levels and trends of fertility, infant and child mortality, and family planning. The survey also gathered information on breastfeeding, matemal and child health cam, the nutritional status of children under five, as well as the characteristics of households and household members.
The main objectives of the project include: a) Providing decision makers with a data base and analyses useful for informed policy choices, b) Expanding the international population and health data base, c) Advancing survey methodology, and d) Developing skills and resources necessary to conduct high quality demographic and health surveys in the participating countries.
National
Sample survey data
The sample for the JPFHS survey was selected to be representative of the major geographical regions, as well as the nation as a whole. The survey adopted a stratified, multi-stage sampling design. In each governorate, localities were classified into 9 strata according to the estimated population size in 1989. The sampling design also allowed for the survey results to be presented according to major cities (Amman, Irbid and Zarqa), other urban localities, and the rural areas. Localities with fewer than 5,000 people were considered rural.
For this survey, 349 sample units were drawn, containing 10,708 housing units for the individual interview. Since the survey used a separate household questionnaire, the Department of Statistics doubled the household sample size and added a few questions on labor force, while keeping the original individual sample intact. This yielded 21,172 housing units. During fieldwork for the household interview, it was found that 4,359 household units were ineligible either because the dwelling was vacant or destroyed, the household was absent during the team visit, or some other reason. There were 16,296 completed household interviews out of 16,813 eligible households, producing a response rate of 96.9 percent.
The completed household interviews yielded 7,246 women eligible for the individual interview, of which 6,461 were successfully interviewed, producing a response rate of 89.2 percent.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1990 JPFIS utilized two questionnaires, one for the household interview and the other for individual women. Both questionnaires were developed first in English and then translated into Arabic. The household questionnaire was used to list all members of the sample households, including usual residents as well as visitors. For each member of the household, basic demographic and socioeconomic characteristics were recorded and women eligible for the individual interview were identified. To be eligible for individual interview, a woman had to be a usual member of the household (part of the de jure population), ever-married, and between 15 and 49 years of age. The household questionnaire was expanded from the standard DHS-II model questionnaire to facilitate the estimation of adult mortality using the orphanhood and widowhood techniques. In addition, the questionnaire obtained information on polygamy, economic activity of persons 15 years of age and over, family type, type of insurance covering the household members, country of work in the summer of 1990 which coincided with the Gulf crisis, and basic data for the calculation of the crude birth rate and the crude death rate. Additional questions were asked about deceased women if they were ever-married and age 15-49, in order to obtain information for the calculation of materoal mortality indices.
The individual questionnaire is a modified version of the standard DHS-II model "A" questionnaire. Experience gained from previous surveys, in particular the 1983 Jordan Fertility and Family Health Survey, and the questionnaire developed by the Pan Arab Project for Child Development (PAPCHILD), were useful in the discussions on the content of the JPFHS questionnaire. A major change from the DHS-II model questionnaire was the rearrangement of the sections so that the marriage section came before reproduction; this allowed the interview to flow more smoothly. Questions on children's cause of death based on verbal autopsy were added to the section on health, which, due to its size, was split into two parts. The first part focused on antenatal care and breastfeeding; the second part examined measures for prevention of childhood diseases and information on the morbidity and mortality of children loom since January 1985. As questions on sexual relations were considered too sensitive, they were replaced by questions about the husband's presence in the household during the specified time period; this served as a proxy for recent sexual activity.
The JPFHS individual questionnaire consists of nine sections: - Respondent's background and household characteristics - Marriage - Reproduction - Contraception - Breastfeeding and health - Immunization, morbidity, and child mortality - Fertility preferences - Husband's background, residence, and woman's work - Height and weight of children
For the individual interview, the number of eligible women found in the selected households and the number of women successfully interviewed are presented. The data indicate a high response rate for the household interview (96.9 percent), and a lower rate for the individual interview (89.2 percent). Women in large cities have a slightly lower response rate (88.6 percent) than those in other areas. Most of the non-response for the individual interview was due to the absence of respondents and the postponement of interviews which were incomplete.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Nonsampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the JPFHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably assured that, apart from nonsampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the JPFI-IS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the report which is presented in this documentation.
Pre-pandemic (data of 2019) epidemiologic and demographic data have shown that some parameters such as cancer, Alzheimer's disease, advanced age, and alcohol intake levels are positively correlated to Covid-19 mortality, instead, birth and fertility rates are negatively correlated to Covid-19 mortality. A stepwise multiple regression analysis of the above parameters against Covid-19 mortality in 32 countries from Asia, America, Africa, and Europe has generated two main predictors of Covid-19 mortality: alcohol consumption and birth/mortality ratio. A first-order equation correlated alcohol intake to Covid-19 mortality as follows; Covid-19 mortality= 0.1057 x (liters of alcohol intake) + 0.2214 (Coefficient of determination = 0.750, F value = 38.63 , P-value = 7.64x10-7). A second equation correlated (birth rate/mortality rate) to Covid-19 mortality as follows; Covid-19 mortality= - 0.3129 x (birth rate/mortality) ratio +1.638 (coefficient of determination = 0.799, F value = 51.2, P-value = 7.09x10-8). Thus, pre-pandemic alcohol consumption is a high predictor of Covid-19 mortality that should be taken into account as a serious risk factor for future safety measures against SARS-CoV-2 infection.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
The EDHS is part of the worldwide Demographic and Health Surveys (DHS) program, which is designed to collect data on fertility, family planning, and maternal and child health. The main objective of the EDHS is to provide policymakers and programme formulators in population and health with adequate and reliable information. The EDHS collected information on demographic characteristics, fertility, infant and child mortality, maternal mortality, nuptiality, fertility preferences, family planning and health-related matters such as breastfeeding practices, antenatal care, children's immunization, childhood disease, nutritional status of mothers and young children and awareness and behaviour regarding sexually transmitted diseases including AIDS. The objectives of the EDHS are to: Collect data at the national level which will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyze the direct and indirect factors which determine levels and trends of fertility; Measure the level of contraceptive knowledge and practice (women and men) by urban-rural residence; Collect reliable data on maternal and child health indicators: immunizations, prevalence and treatment of diarrhea and diseases among children under age three, antenatal care visits, assistance at delivery, and breastfeeding; Assess the nutritional status of children under age three, and their mothers, by means of anthropometric measurements (height and weight ) and analysis of child feeding practices; and Assess the prevailing level of specific knowledge and attitudes regarding AIDS and to evaluate patterns of recent behavior regarding condom use, among women and men.
The principal objective of the Ethiopia Demographic and Health Survey (DHS) is to provide current and reliable data on fertility and family planning behavior, child mortality, children’s nutritional status, the utilization of maternal and child health services, and knowledge of HIV/AIDS. This information is essential for informed policy decisions, planning, monitoring, and evaluation of programs on health in general and reproductive health in particular at both the national and regional levels. A long-term objective of the survey is to strengthen the technical capacity of the Central Statistical Authority to plan, conduct, process, and analyze data from complex national population and health surveys. Moreover, the 2000 Ethiopia DHS is the first survey of its kind in the country to provide national and regional estimates on population and health that are comparable to data collected in similar surveys in other developing countries. As part of the worldwide DHS project, the Ethiopia DHS data add to the vast and growing international database on demographic and health variables. The Ethiopia DHS collected demographic and health information from a nationally representative sample of women and men in the reproductive age groups 15-49 and 15-59, respectively.
The Ethiopia DHS was carried out under the aegis of the Ministry of Health and was implemented by the Central Statistical Authority. ORC Macro provided technical assistance through its MEASURE DHS+ project. The survey was principally funded by the Essential Services for Health in Ethiopia (ESHE) project through a bilateral agreement between the United States Agency for International Development (USAID) and the Federal Democratic Republic of Ethiopia. Funding was also provided by the United Nations Population Fund (UNFPA).
National
Sample survey data
The Ethiopia DHS used the sampling frame provided by the list of census enumeration areas (EAs) with population and household information from the 1994 Population and Housing Census. A proportional sample allocation was discarded because this procedure yielded a distribution in which 80 percent of the sample came from three regions, 16 percent from four regions and 4 percent from five regions. To avoid such an uneven sample allocation among regions, it was decided that the sample should be allocated by region in proportion to the square root of the region's population size. Additional adjustments were made to ensure that the sample size for each region included at least 700 households, in order to yield estimates with reasonable statistical precision.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The Ethiopia DHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire, which were based on model survey instruments developed for the international MEASURE DHS+ project. The questionnaires were specifically geared toward obtaining the kind of information needed by health and family planning program managers and policymakers. The model questionnaires were then adapted to local conditions and a number of additional questions specific to on-going health and family planning programs in Ethiopia were added. These questionnaires were developed in the English language and translated into the five principal languages in use in the country: Amarigna, Oromigna, Tigrigna, Somaligna, and Afarigna. They were then independently translated back to English and appropriate changes were made in the translation of questions in which the back-translated version did not compare well with the original English version. A pretest of all three questionnaires was conducted in the five local languages in November 1999.
All usual members in a selected household and visitors who stayed there the previous night were enumerated using the Household Questionnaire. Specifically, the Household Questionnaire obtained information on the relationship to the head of the household, residence, sex, age, marital status, parental survivorship, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. Women age 15-49 in all selected households and all men age 15-59 in every fifth selected household, whether usual residents or visitors, were deemed eligible, and were interviewed. The Household Questionnaire also obtained information on some basic socioeconomic indicators such as the number of rooms, the flooring material, the source of water, the type of toilet facilities, and the ownership of a variety of durable items. Information was also obtained on the use of impregnated bednets, and the salt used in each household was tested for its iodine content. All eligible women and all children born since Meskerem 1987 in the Ethiopian Calendar, which roughly corresponds to September 1994 in the Gregorian Calendar, were weighed and measured.
The Women’s Questionnaire collected information on female respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunization and health, marriage, fertility preferences, and attitudes about family planning, husband’s background characteristics and women’s work, knowledge of HIV/AIDS and other sexually transmitted infections (STIs).
The Men’s Questionnaire collected information on the male respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, and knowledge of HIV/AIDS and STIs.
A total of 14,642 households were selected for the Ethiopia DHS, of which 14,167 were found to be occupied. Household interviews were completed for 99 percent of the occupied households. A total of 15,716 eligible women from these households and 2,771 eligible men from every fifth household were identified for the individual interviews. The response rate for eligible women is slightly higher than for eligible men (98 percent compared with 94 percent, respectively). Interviews were successfully completed for 15,367 women and 2,607 men.
There is no difference by urban-rural residence in the overall response rate for eligible women; however, rural men are slightly more likely than urban men to have completed an interview (94 percent and 92 percent, respectively). The overall response rate among women by region is relatively high and ranges from 93 percent in the Affar Region to 99 percent in the Oromiya Region. The response rate among men ranges from 83 percent in the Affar Region to 98 percent in the Tigray and Benishangul-Gumuz regions.
Note: See summarized response rates by place of residence in Table A.1.1 and Table A.1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Ethiopia DHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the Ethiopia DHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the Ethiopia DHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the Ethiopia DHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age
The 2019 Sierra Leone Demographic and Health Survey (2019 SLDHS) is a nationwide survey with a nationally representative sample of approximately 13,872 selected households. All women age 15-49 who are usual household members or who spent the night before the survey in the selected households were eligible for individual interviews.
The primary objective of the 2019 SLDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the survey collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence and awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking.
The information collected through the 2019 SLDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-59, and all children aged 0-5 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2019 SLDHS is the Population and Housing Census of the Republic of Sierra Leone, which was conducted in 2015 by Statistics Sierra Leone. Administratively, Sierra Leone is divided into provinces. Each province is subdivided into districts, each district is further divided into chiefdoms/census wards, and each chiefdom/census ward is divided into sections. During the 2015 Population and Housing Census, each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2019 SLDHS, is defined based on EAs from the 2015 EA census frame. The 2015 Population and Housing Census provided the list of EAs that served as a foundation to estimate the number of households and distinguish EAs as urban or rural for the survey sample frame.
The sample for the 2019 SLDHS was a stratified sample selected in two stages. Stratification was achieved by separating each district into urban and rural areas. In total, 31 sampling strata were created. Samples were selected independently in every stratum via a two-stage selection process. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using probability-proportional-to-size selection during the first sampling stage.
In the first stage, 578 EAs were selected with probability proportional to EA size. EA size was the number of households residing in the EA. A household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. In the second stage’s selection, a fixed number of 24 households were selected in every cluster through equal probability systematic sampling, resulting in a total sample size of approximately 13,872 selected households. The household listing was carried out using tablets, and random selection of households was carried out through computer programming. The survey interviewers interviewed only the pre-selected households. To prevent bias, no replacements and no changes of the pre-selected households were allowed in the implementing stages.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2019 SLDHS: The Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Sierra Leone. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the Sierra Leone Ethics and Scientific Review Committee and the ICF Institutional Review Board. All questionnaires were finalised in English, and the 2019 SLDHS used computer-assisted personal interviewing (CAPI) for data collection.
The processing of the 2019 SLDHS data began almost as soon as the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the Stats SL central office in Freetown. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams received alerts on any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding open-ended questions. The Stats SL data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro Systems software package. Concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in mid-October 2019.
A total of 13,793 households were selected for the sample, of which 13,602 were occupied. Of the occupied households, 13,399 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 16,099 women age 15-49 were identified for individual interviews; interviews were completed with 15,574 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 7,429 men age 15-59 were identified, and 7,197 were successfully interviewed, yielding a response rate of 97%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019 Sierra Leone Demographic and Health Survey (SLDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019 SLDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling errors are usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019 SLDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programmes developed by ICF. These programmes use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 77.05(USD Billion) |
MARKET SIZE 2024 | 80.06(USD Billion) |
MARKET SIZE 2032 | 108.78(USD Billion) |
SEGMENTS COVERED | Type ,Age Group ,Indication ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Rising health awareness Growing disposable income Increasing birth rates Product innovation Expansion into emerging markets |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Mead Johnson Nutrition ,FrieslandCampina ,Morinaga Milk Industry ,Danone ,Meiji Holdings ,Abbott Laboratories ,Unilever ,Nestle ,HiPP ,Yakult Honsha ,Arla Foods ,Yili Group ,Hero Group ,Kraft Heinz |
MARKET FORECAST PERIOD | 2024 - 2032 |
KEY MARKET OPPORTUNITIES | 1 Growing demand for organic and natural products 2 Increasing disposable income and urbanization 3 Rising awareness of infant nutrition 4 Ecommerce penetration and online distribution 5 Focus on premium and specialized formulas |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 3.91% (2024 - 2032) |
The primary objective of the 2017-18 Jordan Population and Family Health Survey (JPFHS) is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2017-18 JPFHS: - Collected data at the national level that allowed calculation of key demographic indicators - Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, the prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery among ever-married women - Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and ever-married women age 15-49 - Conducted haemoglobin testing on children age 6-59 months and ever-married women age 15-49 to provide information on the prevalence of anaemia among these groups - Collected data on knowledge and attitudes of ever-married women and men about sexually transmitted infections (STIs) and HIV/AIDS - Obtained data on ever-married women’s experience of emotional, physical, and sexual violence - Obtained data on household health expenditures
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 JPFHS is based on Jordan's Population and Housing Census (JPHC) frame for 2015. The current survey is designed to produce results representative of the country as a whole, of urban and rural areas separately, of three regions, of 12 administrative governorates, and of three national groups: Jordanians, Syrians, and a group combined from various other nationalities.
The sample for the 2017-18 JPFHS is a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. Each of the Syrian camps in the governorates of Zarqa and Mafraq formed its own sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a two-stage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and sub-district within each sampling stratum. By using a probability-proportional-to-size selection for the first stage of selection, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
In the first stage, 970 clusters were selected with probability proportional to cluster size, with the cluster size being the number of residential households enumerated in the 2015 JPHC. The sample allocation took into account the precision consideration at the governorate level and at the level of each of the three special domains. After selection of PSUs and clusters, a household listing operation was carried out in all selected clusters. The resulting household lists served as the sampling frame for selecting households in the second stage. A fixed number of 20 households per cluster were selected with an equal probability systematic selection from the newly created household listing.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used for the 2017-18 JPFHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect population and health issues relevant to Jordan. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2017-18 JPFHS were transferred via IFSS to the DOS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in October 2017 and completed in February 2018.
A total of 19,384 households were selected for the sample, of which 19,136 were found to be occupied at the time of the fieldwork. Of the occupied households, 18,802 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 14,870 women were identified as eligible for an individual interview; interviews were completed with 14,689 women, yielding a response rate of 99%. A total of 6,640 eligible men were identified in the sampled households and 6,429 were successfully interviewed, yielding a response rate of 97%. Response rates for both women and men were similar across urban and rural areas.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Jordan Population and Family Health Survey (JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 JPFHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
The Taylor linearisation method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
Possible ages for someone born in August 1991, calculated as of August 11, 2025
The Indonesia Demographic and Health Survey (IDHS), which is part of the Demographic and Health Surveys (DHS) Project, is one of prominent national surveys in the field of population, family planning, and health. The survey is not only important nationally for planning and evaluating population, family planning, and health developments, but is also important internationally since IDHS has been designed so uniquely that it can be compared with similar surveys in other developing countries.
The 1997 Indonesia Demographic and Health Survey (IDHS) is a follow-on project to the 1987 National Indonesia Contraceptive Prevalence Survey (NICPS), the 1991 IDHS, and the 1994 IDHS. The 1997 IDHS was expanded from the 1994 survey to include a module on family welfare; however, unlike the 1994 survey, the 1997 survey no longer investigated the availability of family planning and health services. The 1997 IDHS also included as part of the household schedule a household expenditure module that provided a means of identifying the household's economic status.
The 1997 IDHS was specifically designed to meet the following objectives: - Provide data concerning fertility, family planning, maternal and child health, maternal mortality, and awareness of AIDS that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs - Provide data about availability of family planning and health services, thereby offering an opportunity for linking women's fertility, family planning, and child care behavior with the availability of services - Provide household expenditure data that which can be used to identify the household's economic status - Provide data that can be used to analyze trends over time by examining many of the same fertility, mortality, and health issues that were addressed in the earlier surveys (1987 NICPS, 1991 IDHS and 1994 IDHS) - Measure changes in fertility and contraceptive prevalence rates and at the same time study factors that affect the changes, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception - Measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia - Provide indicators for classifying families according to their welfare status.
National
Sample survey data
Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (NFPCB) has divided these provinces into three regions as follows:
The 1990 Population Census of Indonesia shows that Java-Bali accounts for 62 percent of the national population, Outer Java-Bali I accounts for 27 percent, and Outer Java-Bali II accounts for 11 percent. The sample for the 1997 IDHS was designed to produce reliable estimates of fertility, contraceptive prevalence and other important variables for each of the provinces and urban and rural areas of the three regions.
In order to meet this objective, between 1,650 and 2,050 households were selected in each of the provinces in Java-Bali, 1,250 to 1,500 households in the ten provinces in Outer Java-Bali I, and 1,000 to 1,250 households in each of the provinces in Outer Java-Bali II, for a total of 35,500 households. With an average of O.8 ever-married women 15-49 per household, the sample was expected to yield approximately 28,000 women eligible for the individual interview.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
The 1997 IDHS used three questionnaires: the household questionnaire, the questionnaire on family welfare, and the individual questionnaire for ever-married women 15-49 years old. The general household and individual questionnaires were based on the DHS Model "A" Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Indonesia. The questionnaires were developed mainly in English and were translated into Indonesian. One deviation from the standard DHS practice is the exclusion of the anthropometric measurement of young children and their mothers. A separate survey carried out by MOH provides this information.
The household questionnaire includes an expenditure schedule adapted from the core Susenas questionnaire model. Susenas is a national household survey carried out annually by CBS to collect data on various demographic and socioeconomic indicators of the population. The family welfare questionnaire was aimed at collecting indicators developed by the NFPCB to classify families according to their welfare status. Families were identified from the list of household members in the household questionnaire. The expenditure module and the family welfare questionnaire were developed in Indonesian.
The first stage of data editing was carried out by the field editors who checked the completed questionnaires for thoroughness and accuracy. Field supervisors then further examined the questionnaires. In many instances, the teams sent the questionnaires to CBS through the regency/municipality statistics offices. In these cases, no checking was done by the PSO. In other cases, Technical Coordinators are responsible for reviewing the completeness of the forms. At CBS, the questionnaires underwent another round of editing, primarily for completeness and coding of responses to open-ended questions. The data were processed using microcomputers and the DHS computer program, ISSA (Integrated System for Survey Analysis). Data entry and office editing were initiated immediately after fieldwork began. Simple range and skip errors were corrected at the data entry stage. Data processing was completed by February 1998, and the preliminary report of the survey was published in April 1998.
A total of 35,362 households were selected for the survey, of which 34,656 were found. Of the encountered households, 34,255 (99 percent) were successfully interviewed. In these households, 29,317 eligible women were identified, and complete interviews were obtained from 28,810 women, or 98 percent of all eligible women. The generally high response rates for both household and individual interviews were due mainly to the strict enforcement of the rule to revisit the originally selected household if no one was at home initially. No substitution for the originally selected households was allowed. Interviewers were instructed to make at least three visits in an effort to contact the household or eligible woman.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: (I) non-sampling errors and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1997 IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1997 IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1997 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1997 IDHS is the ISSA Sampling Error Module. This module
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.