100+ datasets found
  1. Lung cancer cases in England 2022, by age and gender

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer cases in England 2022, by age and gender [Dataset]. https://www.statista.com/statistics/312763/lung-cancer-cases-england-age/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    England
    Description

    This statistic shows the amount of registrations of newly diagnosed cases of lung cancer in England in 2021, by age group and gender. In this year, almost ************* cases were reported among men aged 70 to 74 years. It should be noted that the number of people in England in each age group varies and is therefore not necessarily a reflection of susceptibility to lung cancer.

  2. Lung cancer incidence in the European Union 2022, by age and gender

    • statista.com
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer incidence in the European Union 2022, by age and gender [Dataset]. https://www.statista.com/statistics/1418943/incidence-of-lung-cancer-in-the-eu-by-age-and-gender/
    Explore at:
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    European Union, Europe, EU
    Description

    In 2022, the incidence of lung cancer cases among those aged above 75 years of age in the European Union was ***** per 100,000 men and ***** per 100,000 women. The risk of developing lung cancer can increase by smoking, inhaling second hand smoke and exposure to asbestos

  3. d

    Compendium – Mortality from lung cancer

    • digital.nhs.uk
    csv, xls
    Updated Jul 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Compendium – Mortality from lung cancer [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    csv(137.0 kB), xls(172.0 kB)Available download formats
    Dataset updated
    Jul 21, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2018 - Dec 31, 2020
    Area covered
    Wales, England
    Description

    Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00509

  4. f

    lung cancer data.xlsx

    • figshare.com
    xlsx
    Updated Jan 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jehan Al-Musawi; Farah Al-Shadeedi; Nabaa Shakir; Sabreen Ibrahim (2025). lung cancer data.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.28235576.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 19, 2025
    Dataset provided by
    figshare
    Authors
    Jehan Al-Musawi; Farah Al-Shadeedi; Nabaa Shakir; Sabreen Ibrahim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Objective: To identify the socioepidemiologic and histopathologic patterns of lung cancer patients in the Middle Euphrates region. Patients and Methods: This study analyzed medical information from lung cancer patients at the Middle Euphrates Cancer Center in Iraq from January 2018 to December 2023. Demographic information (age, gender, residency, and education level) as well as clinical details (histopathological categorization) were obtained. The inclusion criteria included all confirmed lung cancer cases, while cases with inadequate data or non-lung cancer diagnosis were omitted. The data were analyzed using IBM SPSS Statistics (version 26). The data summarized using descriptive statistics, and chi-square tests used to identify correlations between categorical variables at a significance level of p < 0.05. Ethical approval was obtained from the relevant institutional review board. Results: A total of 1162 patients were included with mean age at diagnosis(64.47±11.45) years. Majority of patients are over 60 years (64.4%), followed by (40–60 years), 34%, and the least affected group is under 40 years (1.6%). Males account for the majority of cases (68%), while females about 32%, with male:female ratio that fluctuate around 2:1. Illiterate patients and those with low education levels represent the largest proportion accounting for about 87.9% of the study population. Squamous Cell Carcinoma (SCC) is the most frequent subtype (41.7%), followed closely by Adenocarcinoma (AC) at 37%, and Small Cell Lung Cancer (SCLC), 10.5%. Although SCC is the predominant subtype overall, AC incidence is increasing overtime (from 31.7% in 2018 to 41.4% in 2023) with predominance in females, younger and higher educated groups. While the percentage of SCLC and other less common subgroups remained relatively stable over time, there is a significant reduction in NSCLC-NOS diagnoses (from 11.1% in 2018 to 3.2% in 2023). Conclusions: In Iraq, specifically in the Middle Euphrates region, lung cancer is a major public health issue in the elder age groups. The two main subtypes, SCC and AC, are the main contributors, with obvious increment in AC cases in the recent years. The shifting trends indicate the urgent need for improved screening strategies, focused preventative initiatives, and customized treatment plans in view of changing risk profiles.

  5. d

    Mortality from lung cancer: crude death rate, by age group, 3-year average,...

    • digital.nhs.uk
    Updated Jul 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Mortality from lung cancer: crude death rate, by age group, 3-year average, MFP [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    Dataset updated
    Jul 21, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Legacy unique identifier: P00508

  6. Lung cancer incidence rates worldwide as of 2022, by region and gender

    • statista.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer incidence rates worldwide as of 2022, by region and gender [Dataset]. https://www.statista.com/statistics/527677/lung-cancer-incidence-rates-worldwide-region-gender/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of 2022, the age-standardized incidence rate of lung cancer among males in Polynesia was 54.7 per 100,000 population, the highest rate worldwide. The incidence rate of lung cancer among females was highest in Northern America. This statistic shows the age-standardized incidence rate of lung cancer worldwide as of 2022, by region and gender.

  7. Number of Canadian lung cancer cases by age group 2023

    • statista.com
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of Canadian lung cancer cases by age group 2023 [Dataset]. https://www.statista.com/statistics/438147/lung-cancer-cases-in-canada-by-age-group/
    Explore at:
    Dataset updated
    Nov 13, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    For 2023, it was estimated that there would be 25 new lung cancer cases among those between aged 15 to 29 years old. Cancer is one of the leading causes of premature death in Canada. This statistic displays the estimated number of new lung cancer cases in Canada by age group in 2023.

  8. d

    Compendium - LBOI indicators stratified by deprivation quintile and Slope...

    • digital.nhs.uk
    xls
    Updated Jan 26, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Compendium - LBOI indicators stratified by deprivation quintile and Slope Inequality Index (SII) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-local-basket-of-inequality-indicators-lboi/current/indicators-stratified-by-deprivation-quintile-and-sii
    Explore at:
    xls(302.6 kB)Available download formats
    Dataset updated
    Jan 26, 2012
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2004 - Dec 31, 2008
    Area covered
    England
    Description

    Mortality from lung cancer, directly age-standardised rate, persons, under 75 years, 2004-08 (pooled) per 100,000 European Standard population by Local Authority by local deprivation quintile. Local deprivation quintiles are calculated by ranking small areas (Lower Super Output Areas (LSOAs)) within each Local Authority based on their Index of Multiple Deprivation 2007 (IMD 2007) deprivation score, and then grouping the LSOAs in each Local Authority into five groups (quintiles) with approximately equal numbers of LSOAs in each. The upper local deprivation quintile (Quintile 1) corresponds with the 20% most deprived small areas within that Local Authority. The mortality rates have been directly age-standardised using the European Standard Population in order to make allowances for differences in the age structure of populations. There are inequalities in health. For example, people living in more deprived areas tend to have shorter life expectancy, and higher prevalence and mortality rates of most cancers. Lung cancer accounts for 7% of all deaths among men and in England every year and 4% of deaths among women every year. This amounts to 24% of all cancer deaths among men in England and 18% of all cancer deaths among women in England1. Reducing inequalities in premature mortality from all cancers is a national priority, as set out in the Department of Health’s Vital Signs Operating Framework 2008/09-2010/111. This indicator has been produced in order to quantify inequalities in lung cancer mortality by deprivation. This indicator has been discontinued and so there will be no further updates. Legacy unique identifier: P01406

  9. f

    Data_Sheet_1_Revising Incidence and Mortality of Lung Cancer in Central...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krisztina Bogos; Zoltán Kiss; Gabriella Gálffy; Lilla Tamási; Gyula Ostoros; Veronika Müller; László Urbán; Nóra Bittner; Veronika Sárosi; Aladár Vastag; Zoltán Polányi; Zsófia Nagy-Erdei; Zoltán Vokó; Balázs Nagy; Krisztián Horváth; György Rokszin; Zsolt Abonyi-Tóth; Judit Moldvay (2023). Data_Sheet_1_Revising Incidence and Mortality of Lung Cancer in Central Europe: An Epidemiology Review From Hungary.docx [Dataset]. http://doi.org/10.3389/fonc.2019.01051.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Krisztina Bogos; Zoltán Kiss; Gabriella Gálffy; Lilla Tamási; Gyula Ostoros; Veronika Müller; László Urbán; Nóra Bittner; Veronika Sárosi; Aladár Vastag; Zoltán Polányi; Zsófia Nagy-Erdei; Zoltán Vokó; Balázs Nagy; Krisztián Horváth; György Rokszin; Zsolt Abonyi-Tóth; Judit Moldvay
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Central Europe, Hungary, Europe
    Description

    Objective: While Hungary is often reported to have the highest incidence and mortality rates of lung cancer, until 2018 no nationwide epidemiology study was conducted to confirm these trends. The objective of this study was to estimate the occurrence of lung cancer in Hungary based on a retrospective review of the National Health Insurance Fund (NHIF) database.Methods: Our retrospective, longitudinal study included patients aged ≥20 years who were diagnosed with lung cancer (ICD-10 C34) between 1 Jan 2011 and 31 Dec 2016. Age-standardized incidence and mortality rates were calculated using both the 1976 and 2013 European Standard Populations (ESP).Results: Between 2011 and 2016, 6,996 – 7,158 new lung cancer cases were recorded in the NHIF database annually, and 6,045 – 6,465 all-cause deaths occurred per year. Age-adjusted incidence rates were 115.7–101.6/100,000 person-years among men (ESP 1976: 84.7–72.6), showing a mean annual change of − 2.26% (p = 0.008). Incidence rates among women increased from 48.3 to 50.3/100,000 person-years (ESP 1976: 36.9–38.0), corresponding to a mean annual change of 1.23% (p = 0.028). Age-standardized mortality rates varied between 103.8 and 97.2/100,000 person-years (ESP 1976: 72.8–69.7) in men and between 38.3 and 42.7/100,000 person-years (ESP 1976: 27.8–29.3) in women.Conclusion: Age-standardized incidence and mortality rates of lung cancer in Hungary were found to be high compared to Western-European countries, but lower than those reported by previous publications. The incidence of lung cancer decreased in men, while there was an increase in incidence and mortality among female lung cancer patients.

  10. Years of Life Lost (YLL): Lung cancer

    • data.wu.ac.at
    html
    Updated Sep 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NHS Digital (2017). Years of Life Lost (YLL): Lung cancer [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/OWQxMmVjMmMtZTEzYi00YjgyLWE5MGMtOGFkNmM1ZTk4NzEy
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 20, 2017
    Dataset provided by
    National Health Servicehttps://www.nhs.uk/
    NHS Digitalhttps://digital.nhs.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Years of Life Lost (YLL) as a result of death from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data

  11. a

    Lung Cancer Mortality

    • egis-lacounty.hub.arcgis.com
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/lung-cancer-mortality
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  12. Lung cancer: mortality rate

    • data.europa.eu
    html
    Updated Oct 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NHS Digital (2021). Lung cancer: mortality rate [Dataset]. https://data.europa.eu/data/datasets/lung_cancer_-_mortality_rate
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    NHS Digitalhttps://digital.nhs.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Deaths from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data

  13. f

    Summary statistics of average lung cancer incidence rates and average daily...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad A. Tabatabai; Jean-Jacques Kengwoung-Keumo; Gabriela R. Oates; Juliette T. Guemmegne; Akinola Akinlawon; Green Ekadi; Mona N. Fouad; Karan P. Singh (2023). Summary statistics of average lung cancer incidence rates and average daily smokers in percentage in 8 U.S. geographic regions, 1999–2012. [Dataset]. http://doi.org/10.1371/journal.pone.0162949.t013
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mohammad A. Tabatabai; Jean-Jacques Kengwoung-Keumo; Gabriela R. Oates; Juliette T. Guemmegne; Akinola Akinlawon; Green Ekadi; Mona N. Fouad; Karan P. Singh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Summary statistics of average lung cancer incidence rates and average daily smokers in percentage in 8 U.S. geographic regions, 1999–2012.

  14. NCI State Lung Cancer Incidence Rates

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Lung Cancer Incidence Rates [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/NCI::nci-state-lung-cancer-incidence-rates/about
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  15. Incidence rate of lung cancer Australia 2023, by age group

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Incidence rate of lung cancer Australia 2023, by age group [Dataset]. https://www.statista.com/statistics/1310510/australia-projected-lung-cancer-incidence-by-age-group/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Australia
    Description

    In 2023, the projected incidence rate of lung cancer in the Australian population was around ***** cases per 100,000 in the 75 to 79 year old age group, an incidence rate higher than any other age group. The lung cancer incidence rate was projected to be above *** cases per 100,000 for all age groups over **.

  16. Number and rates of new cases of primary cancer, by cancer type, age group...

    • www150.statcan.gc.ca
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Number and rates of new cases of primary cancer, by cancer type, age group and sex [Dataset]. http://doi.org/10.25318/1310011101-eng
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  17. p

    Lung Cancer Dataset - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Lung Cancer Dataset - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/lung-cancer-dataset
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Lung Cancer Dataset includes a diverse array of symptoms essential for comprehensive analysis and model development. The primary categories of data are as follows: Patient Demographics Age: Provides the age at diagnosis, enabling analysis of age-related incidence and outcomes. Gender: Includes information on patient gender, facilitating gender-based studies. Smoking Status: Categorized as current smoker, former smoker, or non-smoker, this data is critical for evaluating the impact of smoking on lung cancer risk and progression. Medical History Comorbidities: Details additional health issues such as chronic obstructive pulmonary disease (COPD), which are relevant for treatment planning and prognosis. Clinical Data Vital Signs: Records of blood pressure, heart rate, respiratory rate, and other vital signs at diagnosis and during treatment.

  18. w

    Age rates of lung cancer incidence in Plymouth 2009-2013

    • data.wu.ac.at
    .csv
    Updated Dec 19, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Plymouth City Council (2016). Age rates of lung cancer incidence in Plymouth 2009-2013 [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/ZWRhNmMyMWQtOWZiZC00NGY1LWI3MDctZjUzNTk0OTAyNjBj
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Dec 19, 2016
    Dataset provided by
    Plymouth City Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Plymouth
    Description

    Data Showing - Age rates of lung cancer incidence - Plymouth - 2009 - 2013

  19. f

    File S1 - Comparing Benefits from Many Possible Computed Tomography Lung...

    • datasetcatalog.nlm.nih.gov
    Updated Jun 30, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Han, Summer S.; Erdogan, Ayca; McMahon, Pamela M.; Black, William C.; Moolgavkar, Suresh; van Rosmalen, Joost; Tammemagi, C. Martin; Holford, Theodore R.; Munshi, Vidit N.; de Koning, Harry J.; Plevritis, Sylvia K.; Haaf, Kevin ten; Jeon, Jihyoun; Hazelton, William; Pinsky, Paul F.; Choi, Sung Eun; Clarke, Lauren; Kong, Chung Yin; Feuer, Eric J.; Meza, Rafael (2014). File S1 - Comparing Benefits from Many Possible Computed Tomography Lung Cancer Screening Programs: Extrapolating from the National Lung Screening Trial Using Comparative Modeling [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001239966
    Explore at:
    Dataset updated
    Jun 30, 2014
    Authors
    Han, Summer S.; Erdogan, Ayca; McMahon, Pamela M.; Black, William C.; Moolgavkar, Suresh; van Rosmalen, Joost; Tammemagi, C. Martin; Holford, Theodore R.; Munshi, Vidit N.; de Koning, Harry J.; Plevritis, Sylvia K.; Haaf, Kevin ten; Jeon, Jihyoun; Hazelton, William; Pinsky, Paul F.; Choi, Sung Eun; Clarke, Lauren; Kong, Chung Yin; Feuer, Eric J.; Meza, Rafael
    Description

    Supporting figures and tables. Figure S1, Prevalence of smoking by age in 1950 birth cohort. Summary of shared input data (used by all 5 models) on smoking patterns for the US cohort born in 1950. Prevalence shown is estimated in the absence of lung cancer mortality. Version 1.0 of the Smoking History Generator (SHG) refers to published data through 2000 (Anderson, et al.), and version 1.5 supplies the 1950 birth cohort used for this analysis with data through 2009 and projections past 2009. Figure S2, Other-cause mortality, by smoking quintile, in 1950 birth cohort. These curves show the other-cause (non-lung cancer) mortality for never smokers and for current smokers by smoking quintile (Q, of cigarettes per day) for the male birth cohort of 1950, out to age 99. Former smokers are intermediate to current and never smokers. There is a similar plot for females. These were shared inputs used by all the models. Note that the rates of non-lung cancer mortality represent the US population, not trial (NLST or PLCO) participants. Figure S3, Prevalence of smoking by age in 1950 birth cohort. Output from one model showing smoking prevalence by age (calendar year), in a no screening scenario. Proportions of current/former/never smokers are in the presence of lung cancer mortality as well as all-cause mortality. Figure S4, Prevalence of smoking by age and pack-years in 1950 birth cohort. Output from one model showing smoking prevalence by category of pack-year and age. The proportion of the cohort by age that has accumulated the specified number of pack-years in the presence of lung cancer mortality and other-cause mortality. Figure S5, Incidence, no screening scenario, output from all models. For predictions past observed SEER data (over age 60) there are no observed data, but we used an age-period-cohort model to project past observed years (‘Projected’ red double line in plots below), which shows that the models are most divergent after age 85, when SEER data become most sparse. We cannot strictly compare incidence to that in prior birth cohorts since smoking patterns are dissimilar, and incidence varies by cohort. Figure S6, Mortality, no screening scenario, output from all models. The vertical line at age 90 indicates age at which all event counts (screens, deaths and deaths averted, and life years gained) were truncated for the analyses reported here. Although the models ranked programs similarly, there was variability in the total numbers of predicted lung cancer cases, deaths, and therefore lung cancer deaths prevented. The differences in rates in the no screening scenario in large part explains the predicted differences between models. The four models (E, F, S, and U) which use two-stage or multi-stage clonal expansion models have more similarly shaped curves than the fifth model (M), which does not use a clonal expansion component (see Table S1 in File S1). Figure S7, Results from all models analogous to Figure 1 in article. Figure S8, Results from all models analogous to Figure 2 in article. Figure S9, Secondary results with reduced operative candidacy with age. The dashed line denotes the efficiency frontier in the main analysis. Table S1, Additional Detail on Models. Table S2, Complete List of 120 Consensus Efficient Scenarios. Table S3, Comparison of Consensus Efficient Scenarios Identified Using Life-years Saved or Lung Cancer Deaths Avoided as Measure of Benefit. (DOCX)

  20. f

    Lung cancer incidence rates by race, 1999–2012 (cases per 100,000).

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad A. Tabatabai; Jean-Jacques Kengwoung-Keumo; Gabriela R. Oates; Juliette T. Guemmegne; Akinola Akinlawon; Green Ekadi; Mona N. Fouad; Karan P. Singh (2023). Lung cancer incidence rates by race, 1999–2012 (cases per 100,000). [Dataset]. http://doi.org/10.1371/journal.pone.0162949.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mohammad A. Tabatabai; Jean-Jacques Kengwoung-Keumo; Gabriela R. Oates; Juliette T. Guemmegne; Akinola Akinlawon; Green Ekadi; Mona N. Fouad; Karan P. Singh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Lung cancer incidence rates by race, 1999–2012 (cases per 100,000).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Lung cancer cases in England 2022, by age and gender [Dataset]. https://www.statista.com/statistics/312763/lung-cancer-cases-england-age/
Organization logo

Lung cancer cases in England 2022, by age and gender

Explore at:
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
England
Description

This statistic shows the amount of registrations of newly diagnosed cases of lung cancer in England in 2021, by age group and gender. In this year, almost ************* cases were reported among men aged 70 to 74 years. It should be noted that the number of people in England in each age group varies and is therefore not necessarily a reflection of susceptibility to lung cancer.

Search
Clear search
Close search
Google apps
Main menu