100+ datasets found
  1. Data from: Survey: Open Science in Higher Education

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
    • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
    • Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

    • Natural Sciences
    • Arts and Humanities or Social Sciences
    • Economics
    • Law
    • Medicine
    • Computer Sciences, Engineering, Technics
    • Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

    • Professor
    • Special education teacher
    • Academic/scientific assistant or research fellow (research and teaching)
    • Academic staff (teaching)
    • Student assistant
    • Other

    We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

  2. Demographic and Health Survey 2017 - 2018 - Albania

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics (INSTAT) (2019). Demographic and Health Survey 2017 - 2018 - Albania [Dataset]. https://catalog.ihsn.org/catalog/7962
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Institute of Statisticshttps://www.instat.gov.al/
    Institute of Public Health (IPH)
    Time period covered
    2017 - 2018
    Area covered
    Albania
    Description

    Abstract

    The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.

    The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.

    The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.

    All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.

    Cleaning operations

    Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.

    Response rate

    A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.

    Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  3. Demographic and Health Survey 2008 - Turkiye

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (2022). Demographic and Health Survey 2008 - Turkiye [Dataset]. https://catalog.ihsn.org/catalog/5517
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Hacettepe University Institute of Population Studies
    Time period covered
    2008
    Area covered
    Türkiye
    Description

    Abstract

    The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.

    The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).

    Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Kind of data

    Sample survey data

    Mode of data collection

    Face-to-face

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.

    The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.

    b) The Individual Questionnaire for ever-married women obtained information on the following subjects: - Background characteristics - Reproduction - Marriage - Knowledge and use of family planning - Maternal care and breastfeeding - Immunization and health - Fertility preferences - Husband's background
    - Women's work and status - Sexually transmitted diseases and AIDS - Maternal and child anthropometry.

    Cleaning operations

    The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.

  4. Demographic and Health Survey 2012 - Indonesia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Indonesia (BPS) (2019). Demographic and Health Survey 2012 - Indonesia [Dataset]. https://catalog.ihsn.org/catalog/3638
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    Authors
    Statistics Indonesia (BPS)
    Time period covered
    2012
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2012 Indonesia Demographic and Health Survey (IDHS) is to provide policymakers and program managers with national- and provincial-level data on representative samples of all women age 15-49 and currently-married men age 15-54.

    The 2012 IDHS was specifically designed to meet the following objectives: • Provide data on fertility, family planning, maternal and child health, adult mortality (including maternal mortality), and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs; • Measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception; • Evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; • Assess married men’s knowledge of utilization of health services for their family’s health, as well as participation in the health care of their families; • Participate in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the areas of family planning, fertility, and health in general

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49
    • Ever married men age 15-54
    • Never married men age 15-24

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Indonesia is divided into 33 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts, and each subdistrict is divided into villages. The entire village is classified as urban or rural.

    The 2012 IDHS sample is aimed at providing reliable estimates of key characteristics for women age 15-49 and currently-married men age 15-54 in Indonesia as a whole, in urban and rural areas, and in each of the 33 provinces included in the survey. To achieve this objective, a total of 1,840 census blocks (CBs)-874 in urban areas and 966 in rural areas-were selected from the list of CBs in the selected primary sampling units formed during the 2010 population census.

    Because the sample was designed to provide reliable indicators for each province, the number of CBs in each province was not allocated in proportion to the population of the province or its urban-rural classification. Therefore, a final weighing adjustment procedure was done to obtain estimates for all domains. A minimum of 43 CBs per province was imposed in the 2012 IDHS design.

    Refer to Appendix B in the final report for details of sample design and implementation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 IDHS used four questionnaires: the Household Questionnaire, the Woman’s Questionnaire, the Currently Married Man’s Questionnaire, and the Never-Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49 in the 2012 IDHS, the Woman’s Questionnaire now has questions for never-married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey questionnaire.

    The Household and Woman’s Questionnaires are largely based on standard DHS phase VI questionnaires (March 2011 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were adopted in the IDHS. In addition, the response categories were modified to reflect the local situation.

    The Household Questionnaire was used to list all the usual members and visitors who spent the previous night in the selected households. Basic information collected on each person listed includes age, sex, education, marital status, education, and relationship to the head of the household. Information on characteristics of the housing unit, such as the source of drinking water, type of toilet facilities, construction materials used for the floor, roof, and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status and are used to calculate the household wealth index. The main purpose of the Household Questionnaire was to identify women and men who were eligible for an individual interview.

    The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics: • Background characteristics (marital status, education, media exposure, etc.) • Reproductive history and fertility preferences • Knowledge and use of family planning methods • Antenatal, delivery, and postnatal care • Breastfeeding and infant and young children feeding practices • Childhood mortality • Vaccinations and childhood illnesses • Marriage and sexual activity • Fertility preferences • Woman’s work and husband’s background characteristics • Awareness and behavior regarding HIV-AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality • Other health issues

    Questions asked to never-married women age 15-24 addressed the following: • Additional background characteristics • Knowledge of the human reproduction system • Attitudes toward marriage and children • Role of family, school, the community, and exposure to mass media • Use of tobacco, alcohol, and drugs • Dating and sexual activity

    The Man’s Questionnaire was administered to all currently married men age 15-54 living in every third household in the 2012 IDHS sample. This questionnaire includes much of the same information included in the Woman’s Questionnaire, but is shorter because it did not contain questions on reproductive history or maternal and child health. Instead, men were asked about their knowledge of and participation in health-careseeking practices for their children.

    The questionnaire for never-married men age 15-24 includes the same questions asked to nevermarried women age 15-24.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computeridentified errors. Data processing activities were carried out by a team of 58 data entry operators, 42 data editors, 14 secondary data editors, and 14 data entry supervisors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2012 IDHS.

    Response rate

    The response rates for both the household and individual interviews in the 2012 IDHS are high. A total of 46,024 households were selected in the sample, of which 44,302 were occupied. Of these households, 43,852 were successfully interviewed, yielding a household response rate of 99 percent.

    Refer to Table 1.2 in the final report for more detailed summarized results of the of the 2012 IDHS fieldwork for both the household and individual interviews, by urban-rural residence.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Indonesia Demographic and Health Survey (2012 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2012 IDHS is a SAS program. This program used the Taylor linearization method

  5. a

    Demographic and Health Survey 2000 - Armenia

    • microdata.armstat.am
    • catalog.ihsn.org
    • +2more
    Updated Oct 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service (2019). Demographic and Health Survey 2000 - Armenia [Dataset]. https://microdata.armstat.am/index.php/catalog/1
    Explore at:
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Ministry of Health
    National Statistical Service
    Time period covered
    2000
    Area covered
    Armenia
    Description

    Abstract

    The Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.

    The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.

    The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.

    The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-54

    Kind of data

    Sample survey data

    Sampling procedure

    The sample was designed to provide estimates of most survey indicators (including fertility, abortion, and contraceptive prevalence) for Yerevan and each of the other ten administrative regions (marzes). The design also called for estimates of infant and child mortality at the national level for Yerevan and other urban areas and rural areas.

    The target sample size of 6,500 completed interviews with women age 15-49 was allocated as follows: 1,500 to Yerevan and 500 to each of the ten marzes. Within each marz, the sample was allocated between urban and rural areas in proportion to the population size. This gave a target sample of approximately 2,300 completed interviews for urban areas exclusive of Yerevan and 2,700 completed interviews for the rural sector. Interviews were completed with 6,430 women. Men age 15-54 were interviewed in every third household; this yielded 1,719 completed interviews.

    A two-stage sample was used. In the first stage, 260 areas or primary sampling units (PSUs) were selected with probability proportional to population size (PPS) by systematic selection from a list of areas. The list of areas was the 1996 Data Base of Addresses and Households constructed by the National Statistical Service. Because most selected areas were too large to be directly listed, a separate segmentation operation was conducted prior to household listing. Large selected areas were divided into segments of which two segments were included in the sample. A complete listing of households was then carried out in selected segments as well as selected areas that were not segmented.

    The listing of households served as the sampling frame for the selection of households in the second stage of sampling. Within each area, households were selected systematically so as to yield an average of 25 completed interviews with eligible women per area. All women 15-49 who stayed in the sampled households on the night before the interview were eligible for the survey. In each segment, a subsample of one-third of all households was selected for the men's component of the survey. In these households, all men 15-54 who stayed in the household on the previous night were eligible for the survey.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used in the ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s Questionnaire. The questionnaires were based on the model survey instruments developed for the MEASURE DHS+ program. The model questionnaires were adapted for use during a series of expert meetings hosted by the Center of Perinatology, Obstetrics, and Gynecology. The questionnaires were developed in English and translated into Armenian and Russian. The questionnaires were pretested in July 2000.

    The Household Questionnaire was used to list all usual members of and visitors to a household and to collect information on the physical characteristics of the dwelling unit. The first part of the household questionnaire collected information on the age, sex, residence, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women 15-49 and men 15-54). The second part of the Household Questionnaire consisted of questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities) and on ownership of a variety of consumer goods.

    The Women’s Questionnaire obtained information on the following topics: - Background characteristics - Pregnancy history - Antenatal, delivery, and postnatal care - Knowledge and use of contraception - Attitudes toward contraception and abortion - Reproductive and adult health - Vaccinations, birth registration, and health of children under age five - Episodes of diarrhea and respiratory illness of children under age five - Breastfeeding and weaning practices - Height and weight of women and children under age five - Hemoglobin measurement of women and children under age five - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitude toward AIDS and other sexually transmitted infections.

    The Men’s Questionnaire focused on the following topics: - Background characteristics - Health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Knowledge of and attitude toward AIDS and other sexually transmitted infections.

    Cleaning operations

    After a team had completed interviewing in a cluster, questionnaires were returned promptly to the National Statistical Service in Yerevan for data processing. The office editing staff first checked that questionnaires for all selected households and eligible respondents had been received from the field staff. In addition, a few questions that had not been precoded (e.g., occupation) were coded at this time. Using the ISSA (Integrated System for Survey Analysis) software, a specially trained team of data processing staff entered the questionnaires and edited the resulting data set on microcomputers. The process of office editing and data processing was initiated soon after the beginning of fieldwork and was completed by the end of January 2001.

    Response rate

    A total of 6,524 households were selected for the sample, of which 6,150 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 97 percent were successfully interviewed.

    In these households, 6,685 women were identified as eligible for the individual interview (i.e., age 15-49). Interviews were completed with 96 percent of them. Of the 1,913 eligible men identified, 90 percent were successfully interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.

    The overall response rates, the product of the household and the individual response rates, were 94 percent for women and 87 percent for men.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2000 Armenia Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey

  6. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  7. N

    Worth, IL Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Worth, IL Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/worth-il-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Worth, Illinois
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Worth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Worth. The dataset can be utilized to understand the population distribution of Worth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Worth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Worth.

    Key observations

    Largest age group (population): Male # 5-9 years (496) | Female # 50-54 years (432). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Worth population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Worth is shown in the following column.
    • Population (Female): The female population in the Worth is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Worth for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Worth Population by Gender. You can refer the same here

  8. Gallup Poll Social Series (GPSS)

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  9. N

    Pennsylvania Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Pennsylvania Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/67595085-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Pennsylvania by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Pennsylvania. The dataset can be utilized to understand the population distribution of Pennsylvania by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Pennsylvania. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Pennsylvania.

    Key observations

    Largest age group (population): Male # 55-59 years (454,771) | Female # 55-59 years (469,411). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Pennsylvania population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Pennsylvania is shown in the following column.
    • Population (Female): The female population in the Pennsylvania is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Pennsylvania for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pennsylvania Population by Gender. You can refer the same here

  10. Demographic and Health Survey 2017 - Indonesia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Dec 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (Kemenkes) (2019). Demographic and Health Survey 2017 - Indonesia [Dataset]. https://catalog.ihsn.org/index.php/catalog/8226
    Explore at:
    Dataset updated
    Dec 5, 2019
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    National Population and Family Planning Board (BKKBN)
    Ministry of Health (Kemenkes)
    Time period covered
    2017
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).

    The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.

    Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.

    For further details on sample design, see Appendix B of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.

    Response rate

    Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.

    In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix D of the survey final report.

  11. Millennium Cohort Study: Age 17, Sweep 7, 2018

    • beta.ukdataservice.ac.uk
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute Of Education University Of London (2024). Millennium Cohort Study: Age 17, Sweep 7, 2018 [Dataset]. http://doi.org/10.5255/ukda-sn-8682-2
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Institute Of Education University Of London
    Description

    Background:
    The Millennium Cohort Study (MCS) is a large-scale, multi-purpose longitudinal dataset providing information about babies born at the beginning of the 21st century, their progress through life, and the families who are bringing them up, for the four countries of the United Kingdom. The original objectives of the first MCS survey, as laid down in the proposal to the Economic and Social Research Council (ESRC) in March 2000, were:

    • to chart the initial conditions of social, economic and health advantages and disadvantages facing children born at the start of the 21st century, capturing information that the research community of the future will require
    • to provide a basis for comparing patterns of development with the preceding cohorts (the National Child Development Study, held at the UK Data Archive under GN 33004, and the 1970 Birth Cohort Study, held under GN 33229)
    • to collect information on previously neglected topics, such as fathers' involvement in children's care and development
    • to focus on parents as the most immediate elements of the children's 'background', charting their experience as mothers and fathers of newborn babies in the year 2000, recording how they (and any other children in the family) adapted to the newcomer, and what their aspirations for her/his future may be
    • to emphasise intergenerational links including those back to the parents' own childhood
    • to investigate the wider social ecology of the family, including social networks, civic engagement and community facilities and services, splicing in geo-coded data when available
    Additional objectives subsequently included for MCS were:
    • to provide control cases for the national evaluation of Sure Start (a government programme intended to alleviate child poverty and social exclusion)
    • to provide samples of adequate size to analyse and compare the smaller countries of the United Kingdom, and include disadvantaged areas of England

    Further information about the MCS can be found on the Centre for Longitudinal Studies web pages.

    The content of MCS studies, including questions, topics and variables can be explored via the CLOSER Discovery website.

    The first sweep (MCS1) interviewed both mothers and (where resident) fathers (or father-figures) of infants included in the sample when the babies were nine months old, and the second sweep (MCS2) was carried out with the same respondents when the children were three years of age. The third sweep (MCS3) was conducted in 2006, when the children were aged five years old, the fourth sweep (MCS4) in 2008, when they were seven years old, the fifth sweep (MCS5) in 2012-2013, when they were eleven years old, the sixth sweep (MCS6) in 2015, when they were fourteen years old, and the seventh sweep (MCS7) in 2018, when they were seventeen years old.

    End User Licence versions of MCS studies:
    The End User Licence (EUL) versions of MCS1, MCS2, MCS3, MCS4, MCS5, MCS6 and MCS7 are held under UK Data Archive SNs 4683, 5350, 5795, 6411, 7464, 8156 and 8682 respectively. The longitudinal family file is held under SN 8172.

    Sub-sample studies:
    Some studies based on sub-samples of MCS have also been conducted, including a study of MCS respondent mothers who had received assisted fertility treatment, conducted in 2003 (see EUL SN 5559). Also, birth registration and maternity hospital episodes for the MCS respondents are held as a separate dataset (see EUL SN 5614).

    Release of Sweeps 1 to 4 to Long Format (Summer 2020)
    To support longitudinal research and make it easier to compare data from different time points, all data from across all sweeps is now in a consistent format. The update affects the data from sweeps 1 to 4 (from 9 months to 7 years), which are updated from the old/wide to a new/long format to match the format of data of sweeps 5 and 6 (age 11 and 14 sweeps). The old/wide formatted datasets contained one row per family with multiple variables for different respondents. The new/long formatted datasets contain one row per respondent (per parent or per cohort member) for each MCS family. Additional updates have been made to all sweeps to harmonise variable labels and enhance anonymisation.

    How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
    For information on how to access biomedical data from MCS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.

    Secure Access datasets:
    Secure Access versions of the MCS have more restrictive access conditions than versions available under the standard End User Licence or Special Licence (see 'Access data' tab above).

    Secure Access versions of the MCS include:
    • detailed sensitive variables not available under EUL. These have been grouped thematically and are held under SN 8753 (socio-economic, accommodation and occupational data), SN 8754 (self-reported health, behaviour and fertility), SN 8755 (demographics, language and religion) and SN 8756 (exact participation dates). These files replace previously available studies held under SNs 8456 and 8622-8627
    • detailed geographical identifier files which are grouped by sweep held under SN 7758 (MCS1), SN 7759 (MCS2), SN 7760 (MCS3), SN 7761 (MCS4), SN 7762 (MCS5 2001 Census Boundaries), SN 7763 (MCS5 2011 Census Boundaries), SN 8231 (MCS6 2001 Census Boundaries), SN 8232 (MCS6 2011 Census Boundaries), SN 8757 (MCS7), SN 8758 (MCS7 2001 Census Boundaries) and SN 8759 (MCS7 2011 Census Boundaries). These files replace previously available files grouped by geography SN 7049 (Ward level), SN 7050 (Lower Super Output Area level), and SN 7051 (Output Area level)
    • linked education administrative datasets for Key Stages 1, 2, 4 and 5 held under SN 8481 (England). This replaces previously available datasets for Key Stage 1 (SN 6862) and Key Stage 2 (SN 7712)
    • linked education administrative datasets for Key Stage 1 held under SN 7414 (Scotland)
    • linked education administrative dataset for Key Stages 1, 2, 3 and 4 under SN 9085 (Wales)
    • linked NHS Patient Episode Database for Wales (PEDW) for MCS1 – MCS5 held under SN 8302
    • linked Scottish Medical Records data held under SNs 8709, 8710, 8711, 8712, 8713 and 8714;
    • Banded Distances to English Grammar Schools for MCS5 held under SN 8394
    • linked Health Administrative Datasets (Hospital Episode Statistics) for England for years 2000-2019 held under SN 9030
    • linked Hospital of Birth data held under SN 5724.
    The linked education administrative datasets held under SNs 8481,7414 and 9085 may be ordered alongside the MCS detailed geographical identifier files only if sufficient justification is provided in the application.

    Researchers applying for access to the Secure Access MCS datasets should indicate on their ESRC Accredited Researcher application form the EUL dataset(s) that they also wish to access (selected from the MCS Series Access web page).

    The seventh sweep of the Millennium Cohort Study (MCS7) was carried out when the cohort members were 17 years old. As 17 is a key transitional age, the sweep purposefully focused on engaging with the cohort members themselves (in addition to their parents). MCS7 marks an important transitional time in the cohort members' lives, where educational and occupational paths can diverge significantly. It is also an important age in data collection terms since it may be the last sweep at which parents are interviewed and it is an age when direct engagement with the cohort members themselves rather than their families is crucial to the long term viability of the study. To reflect this, face-to-face interviews with the cohort members have been conducted for the first time. Cohort members were also asked to do a range of other activities including filling in a self-completion questionnaire on the interviewer's tablet, completing a cognitive assessment (number activity) and having their height, weight and body fat measurements taken. In addition, they were asked to complete a short online questionnaire after the visit.

    Parents were still interviewed at MCS7. Resident parents were asked to complete a household interview and a short online questionnaire, and one parent was asked to complete a Strengths and Difficulties Questionnaire (SDQ) about the cohort member. Cohort members who were either unable or unwilling to complete the main survey were asked to complete a short follow up questionnaire online after the fieldwork finished. This contained some key questions and was designed to boost response and maintain engagement.

    For the second edition (March 2021), two new data files have been added (mcs7_cm_qualifications and mcs7_parent_derived), and five existing data files have been updated (mcs7_cm_derived, mcs7_cm_interview, mcs7_hhgrid, mcs7_parent_cm_interview, cs7_parent_interview). In addition the User Guide, the Derived Variables User Guide and the Longitudinal Data Dictionary have all been updated.

  12. i

    Demographic and Health Survey 2006 - Azerbaijan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Statistical Committee (SSC) (2017). Demographic and Health Survey 2006 - Azerbaijan [Dataset]. https://catalog.ihsn.org/catalog/2495
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    State Statistical Committee (SSC)
    Time period covered
    2006
    Area covered
    Azerbaijan
    Description

    Abstract

    The 2006 Azerbaijan Demographic and Health Survey (2006 AzDHS) is a nationally representative sample survey designed to provide information on population and health issues in Azerbaijan. The primary goal of the survey was to develop a single integrated set of demographic and health data pertaining to the population of the Republic of Azerbaijan.

    The 2006 AzDHS was conducted from July to November by the State Statistical Committee (SSC) of the Republic of Azerbaijan. Macro International Inc. provided technical support for the survey through the MEASURE DHS project. USAID Caucasus, Azerbaijan provided funding for the survey through the MEASURE DHS project. MEASURE DHS is sponsored by the United States Agency for International Development (USAID) to assist countries worldwide in obtaining information on key population and health indicators. The UNICEF/Azerbaijan country office was instrumental for political mobilization during the early stages of the 2006 AzDHS negotiation with the Government of Azerbaijan and also supported the survey through in-kind contributions.

    The 2006 AzDHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, tuberculosis, and HIV/AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well.

    The 2006 AzDHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of Azerbaijanis and health services for the people of Azerbaijan. The 2006 AzDHS also contributes to the growing international database on demographic and health-related variables.

    Geographic coverage

    The 2006 Azerbaijan Demographic and Health Survey (2006 AzDHS) is a nationally representative sample survey.

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-49

    Kind of data

    Sample survey data

    Sampling procedure

    The sample was designed to permit detailed analysis, including the estimation of rates of fertility, infant/child mortality, and abortion, for the national level, for Baku, and for urban and rural areas separately. Many indicators are available separately for each of the economic regions in Azerbaijan except the Autonomous Republic of Nakhichevan (conducting the survey in Nakhichevan was complicated, since this region is in the blockade).

    A representative probability sample of households was selected for the 2006 AzDHS sample. The sample was selected in two stages. In the first stage, 318 clusters in Baku and 8 other economic regions were selected from a list of enumeration areas from the master sample frame that was designed for the 1999 Population Census. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected from each cluster for participation in the survey. This design resulted in a final sample of 7,619 households.

    Because of the non-proportional allocation of the sample to the different economic regions, sampling weights will be required in all analysis using the DHS data to ensure the actual representativity of the sample at both the national and regional levels. The sampling weight for each household is the inverse of its overall selection probability with correction for household non-response; the individual weight is the household weight with correction of individual non-response. Sampling weights are further normalized in order to give the total number of unweighted cases equal to the total number of weighted cases at the national level, for both household weights and individual weights.

    All women age 15-49 who were either permanent residents of the households in the 2006 AzDHS sample or visitors present in the household on the night before the survey were eligible to be interviewed. In addition, all men age 15-59 in one-third of the households selected for the survey were eligible to be interviewed if they were either permanent residents or visitors present in the household on the night before the survey. Interviews were completed with 8,444 women and 2,558 men.

    Note: See detailed description of sample design in APPENDIX A of the Final Report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used in the AzDHS: Household Questionnaire, Women’s Questionnaire, and Men’s Questionnaire. The household and individual questionnaires were based on model survey instruments developed in the MEASURE DHS program. The model questionnaires were adapted for use by experts from the SSC and Ministry of Health (MOH). Input was also sought from a number of nongovernmental organizations. Additionally, at the request of UNICEF, the Multiple Indicator Cluster Survey (MICS) modules on early child education and development, birth registration, and child discipline were adapted for the 2006 AzDHS instrument. The questionnaires were prepared in English and translated into Azerbaijani and Russian. The household and individual questionnaires were pretested in May 2006.

    The Household Questionnaire was used to list all usual members of and visitors to the selected households and to collect information on the socioeconomic status of the household. The first part of the Household Questionnaire collected information on the age, sex, educational attainment, and relationship of each household member or visitor to the household. This information provides basic demographic data for Azerbaijan households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women age 15-49 and men age 15-59). In the second part of the Household Questionnaire, there were questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities), on ownership of a variety of consumer goods, and other questions relating to the socioeconomic status of the household. In addition, the Household Questionnaire was used to obtain information on child discipline, education, and development; to record height and weight measurements of women, men, and children under age five; and to record hemoglobin measurements of women and children under age five.

    The Women’s Questionnaire obtained information from women age 15-49 on the following topics:- - Background characteristics - Pregnancy history - Abortion history - Antenatal, delivery, and postnatal care - Knowledge, attitudes, and use of contraception - Reproductive and adult health - Vaccinations, birth registration, and childhood illness and treatment - Breastfeeding and weaning practices - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitudes toward AIDS and other sexually transmitted diseases - Knowledge of and attitudes toward tuberculosis - Hypertension and other

    The Men’s Questionnaire, administered to men age 15-59, covered the following topics: - Background characteristics - Reproductive health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Fertility preferences - Employment and gender roles - Attitudes toward women’s status - Knowledge of and attitudes toward AIDS and other sexually transmitted diseases - Knowledge of and attitudes toward tuberculosis - Hypertension and other adult health issues - Smoking and alcohol consumption

    Blood pressure measurements of women and men were recorded in their individual questionnaires.

    Cleaning operations

    The processing of the Azerbaijan DHS results began shortly after the fieldwork commenced. Completed questionnaires were returned regularly from the field to SSC headquarters in Baku, where they were entered and edited by data processing personnel who were specially trained for this task. The data processing personnel included a supervisor, a questionnaire administrator, several office editors, 10 data entry operators, and a secondary editor. The concurrent processing of the data was an advantage since the survey technical staff was able to advise field teams of problems detected during the data entry using tables generated to check various data quality parameters. As a result, specific feedback was given to the teams to improve their performance. The data entry and editing phase of the survey was completed in late January 2007.

    Response rate

    A total of 7,619 households were selected for the sample, of which 7,341 were found at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interview. Of the households that were found, 98 percent were successfully interviewed.

    In these households, 8,652 women were identified as eligible for the individual interview. Interviews were completed with 98 percent of the women. Of the 2,717 eligible men identified, 94 percent were successfully interviewed.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the Final Report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the

  13. N

    Ontario, OH Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Ontario, OH Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/674bcb21-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ontario, Ohio
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Ontario by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ontario. The dataset can be utilized to understand the population distribution of Ontario by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ontario. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ontario.

    Key observations

    Largest age group (population): Male # 55-59 years (379) | Female # 60-64 years (448). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Ontario population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Ontario is shown in the following column.
    • Population (Female): The female population in the Ontario is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Ontario for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ontario Population by Gender. You can refer the same here

  14. i

    Demographic and Health Survey 1998 - Ghana

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2019). Demographic and Health Survey 1998 - Ghana [Dataset]. https://dev.ihsn.org/nada/catalog/study/GHA_1998_DHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  15. N

    Scales Mound, IL Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Scales Mound, IL Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/scales-mound-il-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Scales Mound, Illinois
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Scales Mound by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Scales Mound. The dataset can be utilized to understand the population distribution of Scales Mound by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Scales Mound. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Scales Mound.

    Key observations

    Largest age group (population): Male # 10-14 years (36) | Female # 70-74 years (25). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Scales Mound population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Scales Mound is shown in the following column.
    • Population (Female): The female population in the Scales Mound is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Scales Mound for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Scales Mound Population by Gender. You can refer the same here

  16. w

    Reproductive and Child Health Survey 1999 - Tanzania

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    1999
    Area covered
    Tanzania
    Description

    Abstract

    The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

    Geographic coverage

    National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

    Analysis unit

    • Households
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

    See detailed sample implementation in the APPENDIX A of the final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

    The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

    All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

    The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

    The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

    Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

    Response rate

    In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

    In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

    The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

    Note: See detailed sampling error calculation in the APPENDIX B

  17. N

    Oak Lawn, IL Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Oak Lawn, IL Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1f60c33-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oak Lawn, Illinois
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Oak Lawn by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Oak Lawn. The dataset can be utilized to understand the population distribution of Oak Lawn by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Oak Lawn. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Oak Lawn.

    Key observations

    Largest age group (population): Male # 60-64 years (2,383) | Female # 65-69 years (2,301). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Oak Lawn population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Oak Lawn is shown in the following column.
    • Population (Female): The female population in the Oak Lawn is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Oak Lawn for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Oak Lawn Population by Gender. You can refer the same here

  18. i

    Demographic and Health Survey 1987 - Thailand

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://dev.ihsn.org/nada/catalog/73372
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  19. w

    Demographic and Health Survey 2022 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2024). Demographic and Health Survey 2022 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/6122
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    2022 - 2023
    Area covered
    Ghana
    Description

    Abstract

    The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.

    The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5

    The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).

    The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Face-to-face computer-assisted interviews [capi]

    Research instrument

    Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.

    Cleaning operations

    DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.

    From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.

    Response rate

    A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women and men
    • Heaping in anthropometric measurements for children (digit preference)
    • Observation of mosquito nets
    • Observation of handwashing facility
    • School attendance by single year of age
    • Vaccination cards photographed
    • Number of
  20. w

    Demographic and Health Survey 2022 - Bangladesh

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra and Associates (2024). Demographic and Health Survey 2022 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/6290
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Mitra and Associates
    Time period covered
    2022
    Area covered
    Bangladesh
    Description

    Abstract

    The 2022 Bangladesh Demographic and Health Survey (2022 BDHS) is the ninth national survey to report on the demographic and health conditions of women and their families in Bangladesh. The survey was conducted under the authority of the National Institute of Population Research and Training (NIPORT), Medical Education and Family Welfare Division, Ministry of Health and Family Welfare (MOHFW), Government of Bangladesh.

    The primary objective of the 2022 BDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the BDHS collected information on: • Fertility and childhood mortality levels • Fertility preferences • Awareness, approval, and use of family planning methods • Maternal and child health, including breastfeeding practices • Nutrition levels • Newborn care

    The information collected through the 2022 BDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the population of Bangladesh. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Bangladesh.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 BDHS is the Integrated Multi-Purpose Sampling Master Sample, selected from a complete list of enumeration areas (EAs) covering the whole country. It was prepared by the Bangladesh Bureau of Statistics (BBS) for the 2011 population census of the People’s Republic of Bangladesh. The sampling frame contains information on EA location, type of residence (city corporation, other than city corporation, or rural), and the estimated number of residential households. A sketch map that delineates geographic boundaries is available for each EA.

    Bangladesh contains eight administrative divisions: Barishal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is divided into zilas and each zila into upazilas. Each urban area in an upazila is divided into wards, which are further subdivided into mohallas. A rural area in an upazila is divided into union parishads (UPs) and, within UPs, into mouzas. These administrative divisions allow the country to be separated into rural and urban areas.

    The survey is based on a two-stage stratified sample of households. In the first stage, 675 EAs (237 in urban areas and 438 in rural areas) were selected with probability proportional to EA size. The BBS drew the sample in the first stage following specifications provided by ICF. A complete household listing operation was then carried out by Mitra and Associates in all selected EAs to provide a sampling frame for the second-stage selection of households.

    In the second stage of sampling, a systematic sample of an average of 45 households per EA was selected to provide statistically reliable estimates of key demographic and health variables for urban and rural areas separately and for each of the eight divisions in Bangladesh.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four types of questionnaires were used for the 2022 BDHS: the Household Questionnaire, the Woman’s Questionnaire (completed by ever-married women age 15–49), the Biomarker Questionnaire, and two verbal autopsy questionnaires. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect population and health issues relevant to Bangladesh. In addition, a selfadministered Fieldworker Questionnaire collected information about the survey’s fieldworkers. The questionnaires were adapted for use in Bangladesh after a series of meetings with a Technical Working Group (TWG). The questionnaires were developed in English and then translated to and printed in Bangla.

    Cleaning operations

    The survey data were collected using tablet PCs running Windows 10.1 and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. The Bangla language questionnaire was used for collecting data via computer-assisted personal interviewing (CAPI). The CAPI program accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the PC tablets by each interviewer. Supervisors downloaded interview data to their computer, checked the data for completeness, and monitored fieldwork progress

    Each day, after completion of interviews, field supervisors submitted data to the servers. Data were sent to the central office via the internet or other modes of telecommunication allowing electronic transfer of files. The data processing manager monitored the quality of the data received and downloaded completed files into the system. ICF provided the CSPro software for data processing and offered technical assistance in preparation of the data editing programs. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of PC tablets was provided by ICF.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
Organization logo

Data from: Survey: Open Science in Higher Education

Related Article
Explore at:
Dataset updated
Aug 3, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Open Science in (Higher) Education – data of the February 2017 survey

This data set contains:

  • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
  • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
  • Readme file (txt)

Survey structure

The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

Demographic questions

Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

  • Natural Sciences
  • Arts and Humanities or Social Sciences
  • Economics
  • Law
  • Medicine
  • Computer Sciences, Engineering, Technics
  • Other

The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

  • Professor
  • Special education teacher
  • Academic/scientific assistant or research fellow (research and teaching)
  • Academic staff (teaching)
  • Student assistant
  • Other

We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

Remark on OER question

Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

Data collection

The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

Data clearance

We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

References

Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

First results of the survey are presented in the poster:

Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

Contact:

Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

[1] https://www.limesurvey.org

[2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

Search
Clear search
Close search
Google apps
Main menu