Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_0d64da52342e43d864bc84898ba6835f/view
This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
In 2023, the age-specific death rate for men aged 90 or over in England and Wales was 248.1 per one thousand population, and 215.1 for women. Except for infants that were under the age of one, younger age groups had the lowest death rate, with the death rate getting progressively higher in older age groups.
This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated 8/14/2024. Rate of deaths per 100,000 population by selected underlying causes of death among Maryland residents (1992-2017).
Death statistics (i) Number of Deaths for Different Sexes and Crude Death Rate for the Period from 1981 to 2023 (ii) Age-standardised Death Rate (Overall and by Sex) for the Period from 1981 to 2023 (iii) Age-specific Death Rate for Year 2013 and 2023 (iv) Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (v) Number of Deaths by Leading Causes of Death for the Period from 2001 to 2023 (vi) Age-standardised Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (vii) Late Foetal Mortality Rate for the Period from 1981 to 2023 (viii) Perinatal Mortality Rate for the Period from 1981 to 2023 (ix) Neonatal Mortality Rate for the Period from 1981 to 2023 (x) Infant Mortality Rate for the Period from 1981 to 2023 (xi) Number of Maternal Deaths for the Period from 1981 to 2023 (xii) Maternal Mortality Ratio for the Period from 1981 to 2023
Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique ‘humped’ age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.Methods and FindingsThe model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.ConclusionsWe present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and demographic models, this model makes it possible to project future age-specific mortality profiles and number of deaths for countries with generalized HIV epidemics.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Premature death rate measures mortality by counting deaths at earlier ages more than deaths at later ages. For example, when a person dies at 20, this death contributes 55 years of potential life lost. In contrast, when a person dies at age 70, this death contributes only five years of potential life lost to a county. For our purposes, premature deaths occur before age 75. Counties with older populations are more likely to have higher crude premature death rates than counties with younger populations. Therefore, when age-adjusted, we remove the effect of differently aged populations as a risk factor for premature death. This allows us to make a fair comparison of premature death rates across counties.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Life expectancy at birth is decomposed by age specific death rates, which can change over time and contribute to the overall change in life expectancy.
In 2020, 108 out of 1,000 elderly people living in rural India, died at an age between 80 and 84 years old. The highest death rate was among elderly people who were 85 years or older in the country.
NCHS - Age-adjusted Death Rates for Selected Major Causes of Death
Description
This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/nchs-age-adjusted-death-rates-for-selected-major-c.
In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Age-Adjusted Premature Death Rate for Kane County, IL (CDC20N2UAA017089) from 1999 to 2020 about Kane County, IL; Chicago; premature; death; IL; rate; and USA.
From 2000 to 2017, the infant mortality rate for all maternal age groups in the United States declined. The age group at highest risk were those aged under 20 years, with those aged between 30 and 34 years having the lowest risk of infant death during this time period. This statistic illustrates infant mortality per 1,000 births from 2000 to 2017 in the U.S., by maternal age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Probability of Dying at Age 10-14 Years: per 1000 data was reported at 7.900 Ratio in 2019. This records a decrease from the previous number of 8.100 Ratio for 2018. Nigeria NG: Probability of Dying at Age 10-14 Years: per 1000 data is updated yearly, averaging 10.000 Ratio from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 12.900 Ratio in 1990 and a record low of 7.900 Ratio in 2019. Nigeria NG: Probability of Dying at Age 10-14 Years: per 1000 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Probability of dying between age 10-14 years of age expressed per 1,000 adolescents age 10, if subject to age-specific mortality rates of the specified year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
In 2021, the highest number of deaths per one thousand inhabitants in Russia for both genders occurred among age groups of 80 years and up. In general, the male population had a much higher mortality rate, especially in the age groups from 50 years and older.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crude, age-specific, and age-standardized COVID-19 mortality rates per 100,000 person-years for non-Hispanic White, non-Hispanic Black, Hispanic, non-Hispanic American Indian or Alaska Native, and non-Hispanic Asian or Pacific Islander populations, and age-specific mortality rate ratios and rate differences per 100,000 person-years.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.