https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objective: To examine if the rankings of state HIV age-standardized death rates (ASDRs) changed if different standard population (SP) was used. Design: A cross-sectional population-based observational study. Setting 36 states in the United States. Participants: People died from 2015 to 2019. Main outcome measures: State HIV ASDR using 4 SPs, namely WHO2000, US2000, US2mor020, and Eur2011–2030. Results: The rankings of 19 states did not change when ASDRs were calculated using US2000 and US2020. Of the 17 states whose rankings changed, the rankings of 9 states calculated using US2000 were higher than those calculated using US2020; in 8 states, the rankings were lower. The states with the greatest changes in rankings between US2000 and US2020 were Kentucky (12th and 9th, respectively) and Massachusetts (8th and 11th, respectively). Conclusions: State ASDRs calculated using the current official SP (US2000) weigh middle-age HIV death rates more heavily than older-age HIV death rates, resulting in lower ASDRs among states with higher older-age HIV death rates. Methods The data were extracted from CDC WONDER.
The probability of dying between birth and the exact age of 1, expressed per 1,000 live births. The data is sorted by both sex and total and includes a range of values from 1900 to 2019. The calculation for infant mortality rates is derived from a standard period abridged life table using the age-specific deaths and mid-year population counts from civil registration data. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages.
All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at a given age is a summary measure of mortality rates present in a population (estimated as the area under the survival curve), and represents the average number of years an individual at that age is expected to live if current age-specific mortality rates apply now and in the future. A complementary metric is the number of Life Years Lost, which is used to measure the reduction in life expectancy for a specific group of persons, for example those diagnosed with a specific disease or condition (e.g. smoking). However, calculation of life expectancy among those with a specific disease is not straightforward for diseases that are not present at birth, and previous studies have considered a fixed age at onset of the disease, e.g. at age 15 or 20 years. In this paper, we present the R package lillies (freely available through the Comprehensive R Archive Network; CRAN) to guide the reader on how to implement a recently-introduced method to estimate excess Life Years Lost associated with a disease or condition that overcomes these limitations. In addition, we show how to decompose the total number of Life Years Lost into specific causes of death through a competing risks model, and how to calculate confidence intervals for the estimates using non-parametric bootstrap. We provide a description on how to use the method when the researcher has access to individual-level data (e.g. electronic healthcare and mortality records) and when only aggregated-level data are available.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages. All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages.
Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health.
Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data.
Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortality indicators standardized by sex and cause of death. Year: 2010. Territory: Province of Lucca. Indicators: number of deaths observed, number of deaths expected, number of excess deaths, standardised mortality ratio. Standardisation method applied: indirect. Reference population (standard population): Residents in the geographical area of the Centre (Tuscany, Umbria, Marche, Lazio). Primary data source (number of deaths observed, population resident in the province of Lucca, sex- and age-specific mortality rates of the population resident in the Centro district): ISTAT. Calculation of indicators: Statistical Office of the Province of Lucca.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This data shows premature deaths (Age under 75) from Respiratory Disease, numbers and rates by gender, as 3-year moving-averages.
Smoking is the major cause of chronic obstructive pulmonary disease (COPD), one of the major Respiratory diseases. COPD (which includes chronic bronchitis and emphysema) results in many hospital admissions. Respiratory diseases can also be caused by environmental factors (such as pollution, or housing conditions) and influenza. Respiratory disease mortality rates show a socio-economic gradient.
Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 4.07i. This data is updated annually.
The dataset was originally created to allow the construction of age-specific mortality series and cohort mortality series for particular diseases, from the mid-nineteenth century to the present (in conjunction with the comparable mortality database created by the Office of National Statistics which covers 1901 – present). The dataset is fairly comprehensive and therefore allows both fine analysis of trends in single causes and also the construction of consistent aggregated categories of causes over time. Additionally, comparison of trends in individual causes can be used to infer transfers of deaths between categories over time, that may cause artifactual changes in mortality rates of particular causes. The data are presented by sex, allowing calculation of sex ratios. The age-specific and annual nature of the dataset allows the analysis of cause-specific mortality by birth cohort (assuming low migration at the national level). The database can be used in conjunction with the ONS database “Historic Mortality and Population Data, 1901-1992”, already in the UK Data Archive collection as SN 2902, to create continuous cause-of-death series for the period 1848-1992 (or later, if using more recent versions of the ONS database).
Indicator 3.4.1Mortality rate attributed to Cardiovascular disease, cancer, diabetes, or chronic respiratory disease.Methodology:There are 4 steps involved in the calculation of this indicator:1. Estimation of life table of the country population or estimation of WHO life tables, based on the UN World Population Prospects 2012 revision.2. Cause-of-death distributions by five years age groups and mid-year population distribution by five years age groups .3. Calculation of age-specific mortality rates from the four main NCDs for each five-year age range between 30 and 70.4. Calculation of the probability of dying between the ages of 30 and 70 years from cardiovascular diseases, cancer, diabetes or chronic respiratory diseases.Finally, converting the probabilities of dying into percentages.Data Source:Ministry of Public Health - Accounts of the National Planning Council.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages.
Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: NHS Health and Social Care Information Centre (NHS-HSCIC) (Dataset unique identifier P00399). This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Circulatory Disease, numbers and rates by gender, as 3-year moving-averages.
Circulatory diseases include heart diseases and stroke, and others. Socio-economic and lifestyle factors are associated with circulatory disease deaths and inequalities in circulatory disease rates. Modifiable risk factors include smoking, excess weight, diet, and physical inactivity.
Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: NHS Digital Compendium hub, dataset unique identifier P00395. This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages. Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), indicator ID 40501, E05a. This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Liver Disease, numbers and rates by gender, as 3-year moving-averages.
Most liver disease is preventable and much is influenced by alcohol consumption and obesity prevalence, which are both amenable to public health interventions.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 4.06i. The data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Cardiovascular Disease, numbers and rates by gender, as 3-year moving-averages. Cardiovascular Disease include heart diseases and stroke, and others. Socio-economic and lifestyle factors are associated with circulatory disease deaths and inequalities in circulatory disease rates. Modifiable risk factors include smoking, excess weight, diet, and physical inactivity. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: NHS Digital (now part of NHS England) Compendium hub, dataset unique identifier P00395. This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from alcohol-related conditions, all ages, directly age-standardised rate per 100,000 population (standardised to the European standard population).
Rationale Alcohol consumption is a contributing factor to hospital admissions and deaths from a diverse range of conditions. Alcohol misuse is estimated to cost the NHS about £3.5 billion per year and society as a whole £21 billion annually.
The Government has said that everyone has a role to play in reducing the harmful use of alcohol - this indicator is one of the key contributions by the Government (and the Department of Health and Social Care) to promote measurable, evidence-based prevention activities at a local level, and supports the national ambitions to reduce harm set out in the Government's Alcohol Strategy. This ambition is part of the monitoring arrangements for the Responsibility Deal Alcohol Network. Alcohol-related deaths can be reduced through local interventions to reduce alcohol misuse and harm.
The proportion of disease attributable to alcohol (alcohol attributable fraction) is calculated using a relative risk (a fraction between 0 and 1) specific to each disease, age group, and sex combined with the prevalence of alcohol consumption in the population. All mortality records are extracted that contain an attributable disease and the age and sex-specific fraction applied. The results are summed into quinary age bands for the numerator and a directly standardised rate calculated using the European Standard Population. This revised indicator uses updated alcohol attributable fractions, based on new relative risks from ‘Alcohol-attributable fractions for England: an update’ (1) published by PHE in 2020. A detailed comparison between the 2013 and 2020 alcohol attributable fractions is available in Appendix 3 of the PHE report (2). A consultation was also undertaken with stakeholders where the impact of the new methodology on the LAPE indicators was quantified and explored (3).
The calculation that underlies all alcohol-related indicators has been updated to take account of the latest academic evidence and more recent alcohol-consumption figures. The result has been that the newly published mortality and admission rates are lower than those previously published. This is due to a change in methodology, mainly because alcohol consumption across the population has reduced since 2010. Therefore, the number of deaths and hospital admissions that we attribute to alcohol has reduced because in general people are drinking less today than they were when the original calculation was made.
Figures published previously did not misrepresent the burden of alcohol based on the previous evidence – the methodology used in this update is as close as sources and data allow to the original method. Though the number of deaths and admissions attributed to alcohol each year has reduced, the direction of trend and the key inequalities due to alcohol harm remain the same. Alcohol remains a significant burden on the health of the population and the harm alcohol causes to individuals remains unchanged.
References:
PHE (2020) Alcohol-attributable fractions for England: an update PHE (2020) Alcohol-attributable fractions for England: an update: Appendix 3 PHE (2021) Proposed changes for calculating alcohol-related mortality
Definition of numerator Deaths from alcohol-related conditions based on underlying cause of death, registered in the calendar year for all ages. Each alcohol-related death is assigned an alcohol attributable fraction based on underlying cause of death (and all cause of deaths fields for the conditions: ethanol poisoning, methanol poisoning, toxic effect of alcohol). Alcohol-attributable fractions were not available for children.
Mortality data includes all deaths registered in the calendar year where the local authority of usual residence of the deceased is one of the English geographies and an alcohol attributable diagnosis is given as the underlying cause of death. Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: MUSE implementation guidance.
Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: IRIS implementation guidance.
Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change, and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change, and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at: 2011 implementation guidance.
Definition of denominator ONS mid-year population estimates aggregated into quinary age bands.
Caveats There is the potential for the underlying cause of death to be incorrectly attributed on the death certificate and the cause of death misclassified. Alcohol-attributable fractions were not available for children. Conditions where low levels of alcohol consumption are protective (have a negative alcohol-attributable fraction) are not included in the calculation of the indicator.
The confidence intervals do not take into account the uncertainty involved in the calculation of the AAFs – that is, the proportion of deaths that are caused by alcohol and the alcohol consumption prevalence that are included in the AAF formula are only an estimate and so include uncertainty. The confidence intervals published here are based only on the observed number of deaths and do not account for this uncertainty in the calculation of attributable fraction - as such the intervals may be too narrow.
The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey of 7,070 women age 15-49 and 1,996 men age 15-54. The UDHS was designed to provide information on levels and trends of fertility, family planning knowledge and use, infant and child mortality, and maternal and child health. Fieldwork for the UDHS took place from late-March to mid-August 1995. The survey was similar in scope and design to the 1988-89 UDHS. Survey data show that fertility levels may be declining, contraceptive use is increasing, and childhood mortality is declining; however, data also point to several remaining areas of challenge.
The 1995 UDHS was a follow-up to a similar survey conducted in 1988-89. In addition to including most of the same questions included in the 1988-89 UDHS, the 1995 UDHS added more detailed questions on AIDS and maternal mortality, as well as incorporating a survey of men. The general objectives of the 1995 UDHS are to: - provide national level data which will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; - analyse the direct and indirect factors which determine the level and trends of fertility; - measure the level of contraceptive knowledge and practice (of both women and men) by method, by urban-rural residence, and by region; - collect reliable data on maternal and child health indicators; immunisation, prevalence, and treatment of diarrhoea and other diseases among children under age four; antenatal visits; assistance at delivery; and breastfeeding; - assess the nutritional status of children under age four and their mothers by means of anthropometric measurements (weight and height), and also child feeding practices; and - assess among women and men the prevailing level of specific knowledge and attitudes regarding AIDS and to evaluate patterns of recent behaviour regarding condom use.
MAIN RESULTS
Fertility Trends. UDHS data indicate that fertility in Uganda may be starting to decline. The total fertility rate has declined from the level of 7.1 births per woman that prevailed over the last 2 decades to 6.9 births for the period 1992-94. The crude birth rate for the period 1992-94 was 48 live births per I000 population, slightly lower than the level of 52 observed from the 1991 Population and Housing Census. For the roughly 80 percent of the country that was covered in the 1988-89 UDHS, fertility has declined from 7.3 to 6.8 births per woman, a drop of 7 percent over a six and a half year period.
Birth Intervals. The majority of Ugandan children (72 percent) are born after a "safe" birth interval (24 or more months apart), with 30 percent born at least 36 months after a prior birth. Nevertheless, 28 percent of non-first births occur less than 24 months after the preceding birth, with 10 percent occurring less than 18 months since the previous birth. The overall median birth interval is 29 months. Fertility Preferences. Survey data indicate that there is a strong desire for children and a preference for large families in Ugandan society. Among those with six or more children, 18 percent of married women want to have more children compared to 48 percent of married men. Both men and women desire large families.
Knowledge of Contraceptive Methods. Knowledge of contraceptive methods is nearly universal with 92 percent of all women age 15-49 and 96 percent of all men age 15-54 knowing at least one method of family planning. Increasing Use of Contraception. The contraceptive prevalence rate in Uganda has tripled over a six-year period, rising from about 5 percent in approximately 80 percent of the country surveyed in 1988-89 to 15 percent in 1995.
Source of Contraception. Half of current users (47 percent) obtain their methods from public sources, while 42 percent use non-governmental medical sources, and other private sources account for the remaining 11 percent.
High Childhood Mortality. Although childhood mortality in Uganda is still quite high in absolute terms, there is evidence of a significant decline in recent years. Currently, the direct estimate of the infant mortality rate is 81 deaths per 1,000 births and under five mortality is 147 per 1,000 births, a considerable decline from the rates of 101 and 180, respectively, that were derived for the roughly 80 percent of the country that was covered by the 1988-89 UDHS.
Childhood Vaccination Coverage. One possible reason for the declining mortality is improvement in childhood vaccination coverage. The UDHS results show that 47 percent of children age 12-23 months are fully vaccinated, and only 14 percent have not received any vaccinations.
Childhood Nutritional Status. Overall, 38 percent of Ugandan children under age four are classified as stunted (low height-for-age) and 15 percent as severely stunted. About 5 percent of children under four in Uganda are wasted (low weight-for-height); 1 percent are severely wasted. Comparison with other data sources shows little change in these measures over time.
Virtually all women and men in Uganda are aware of AIDS. About 60 percent of respondents say that limiting the number of sexual partners or having only one partner can prevent the spread of disease. However, knowledge of ways to avoid AIDS is related to respondents' education. Safe patterns of sexual behaviour are less commonly reported by respondents who have little or no education than those with more education. Results show that 65 percent of women and 84 percent of men believe that they have little or no chance of being infected.
Availability of Health Services. Roughly half of women in Uganda live within 5 km of a facility providing antenatal care, delivery care, and immunisation services. However, the data show that children whose mothers receive both antenatal and delivery care are more likely to live within 5 km of a facility providing maternal and child health (MCH) services (70 percent) than either those whose mothers received only one of these services (46 percent) or those whose mothers received neither antenatal nor delivery care (39 percent).
The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.
The population covered by the 1995 UDHS is defined as the universe of all women age 15-49 in Uganda. But because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.
Sample survey data
A sample of 303 primary sampling units (PSU) consisting of enumeration areas (EAs) was selected from a sampling frame of the 1991 Population and Housing Census. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.
Districts in the DISH project area were grouped by proximity into the following five reporting domains: - Kasese and Mbarara Districts - Masaka and Rakai Districts - Luwero and Masindi Districts - Jinja and Kamuli Districts - Kampala District
The sample for the 1995 UDHS was selected in two stages. In the first stage, 303 EAs were selected with probability proportional to size. Then, within each selected EA, a complete household listing and mapping exercise was conducted in December 1994 forming the basis for the second-stage sampling. For the listing exercise, 11 listers from the Statistics Department were trained. Institutional populations (army barracks, hospitals, police camps, etc.) were not listed.
From these household lists, households to be included in the UDHS were selected with probability inversely proportional to size based on the household listing results. All women age 15-49 years in these households were eligible to be interviewed in the UDHS. In one-third of these selected households, all men age 15-54 years were eligible for individual interview as well. The overall target sample was 6,000 women and 2,000 men. Because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.
Since one objective of the survey was to produce estimates of specific demographic and health indicators for the areas included in the DISH project, the sample design allowed for oversampling of households in these districts relative to their actual proportion in the population. Thus, the 1995 UDHS sample is not self-weighting at the national level; weights are required to estimate national-level indicators. Due to the weighting factor and rounding of estimates, figures may not add to totals. In addition, the percent total may not add to 100.0 due to rounding.
Face-to-face
Four questionnaires were used in the 1995 UDHS.
a) A Household Schedule was used to list the names and certain
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objective: To examine if the rankings of state HIV age-standardized death rates (ASDRs) changed if different standard population (SP) was used. Design: A cross-sectional population-based observational study. Setting 36 states in the United States. Participants: People died from 2015 to 2019. Main outcome measures: State HIV ASDR using 4 SPs, namely WHO2000, US2000, US2mor020, and Eur2011–2030. Results: The rankings of 19 states did not change when ASDRs were calculated using US2000 and US2020. Of the 17 states whose rankings changed, the rankings of 9 states calculated using US2000 were higher than those calculated using US2020; in 8 states, the rankings were lower. The states with the greatest changes in rankings between US2000 and US2020 were Kentucky (12th and 9th, respectively) and Massachusetts (8th and 11th, respectively). Conclusions: State ASDRs calculated using the current official SP (US2000) weigh middle-age HIV death rates more heavily than older-age HIV death rates, resulting in lower ASDRs among states with higher older-age HIV death rates. Methods The data were extracted from CDC WONDER.