In 2022, about 17.3 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over.
A rapidly aging population
In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change in order to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well in order to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce.
The future population
It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.
This statistic shows the leading metropolitan areas with the highest percentage of population aged 65 years and over in the United States in 2019. In 2019, The Villages, Florida was ranked first with about 59.5 percent of its population aged 65 years and over.
In 2022, among people aged 65 years and above, 35.7 percent had healthcare coverage through Medicare Advantage. The largest share of older adults in the U.S. were privately insured (with or without Medicare), while only 0.7 percent were uninsured in 2022. This statistic illustrates the distribution of health insurance coverage among adults aged 65 and above in the U.S. in 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: as % of Total: Female: Aged 65 and Above data was reported at 16.925 % in 2017. This records an increase from the previous number of 16.550 % for 2016. United States US: Population: as % of Total: Female: Aged 65 and Above data is updated yearly, averaging 14.035 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 16.925 % in 2017 and a record low of 10.023 % in 1960. United States US: Population: as % of Total: Female: Aged 65 and Above data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Population and Urbanization Statistics. Female population 65 years of age or older as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Red Hook Town, New York population pyramid, which represents the Red Hook town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Red Hook town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
People in different subgroups age at different rates. Surveys containing biomarkers can be used to assess these subgroup differences. We illustrate this using hand-grip strength to produce an easily interpretable, physical-based measure that allows us to compare characteristic-based ages across educational subgroups in the United States. Hand-grip strength has been shown to be a good predictor of future mortality and morbidity, and therefore a useful indicator of population aging. Data from the Health and Retirement Survey (HRS) were used. Two education subgroups were distinguished, those with less than a high school diploma and those with more education. Regressions on hand-grip strength were run for each sex and race using age and education, their interactions and other covariates as independent variables. Ages of identical mean hand-grip strength across education groups were compared for people in the age range 60 to 80. The hand-grip strength of 65 year old white males with less education was the equivalent to that of 69.6 (68.2, 70.9) year old white men with more education, indicating that the more educated men had aged more slowly. This is a constant characteristic age, as defined in the Sanderson and Scherbov article “The characteristics approach to the measurement of population aging” published 2013 in Population and Development Review. Sixty-five year old white females with less education had the same average hand-grip strength as 69.4 (68.2, 70.7) year old white women with more education. African-American women at ages 60 and 65 with more education also aged more slowly than their less educated counterparts. African American men with more education aged at about the same rate as those with less education. This paper expands the toolkit of those interested in population aging by showing how survey data can be used to measure the differential extent of aging across subpopulations.
This statistic presents the percentage of population aged 65 and over in the United States in 2019, distinguished by state. In 2019, about 21 percent of Florida's population was aged 65 and over. The national share stood at 16.5 percent.
https://www.icpsr.umich.edu/web/ICPSR/studies/7955/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7955/terms
Preparation of this data collection was funded by grant
Services, Administration on Aging. Estimates of the population of persons 60 years old and older were received from the Census Bureau in printed form and were made machine-readable by staff at ICPSR. Other variables contained in this dataset were merged from existing machine-readable census files. The data concerning racial composition of counties were taken from the CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: P.L. 94-171 POPULATION COUNTS (ICPSR 7854). The figures concerning per capita income were taken from the Bureau of the Census, GENERAL REVENUE SHARING, 1978 POPULATION ESTIMATES (ICPSR 7840). Variables include Federal Information Processing Standard (FIPS) state and county codes, 1978 per capita income of county, and total population of county broken down by sex, race, and age (in four-year increments with a category for persons 75 years old and older).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of United States. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 202,602,785 (61.45% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This layer shows demographic context for senior well-being work. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. The layer is symbolized to show the percentage of population aged 65 and up (senior population). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B01001, B09021, B17020, B18101, B23027, B25072, B25093, B27010, B28005, C27001B-IData downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Leicester Town, New York population pyramid, which represents the Leicester town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Leicester town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Sanford, NC population pyramid, which represents the Sanford population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sanford Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Brainerd, MN population pyramid, which represents the Brainerd population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brainerd Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Active Population: Aged 55-64: All for the United States was 27353630.00000 Persons in February of 2025, according to the United States Federal Reserve. Historically, Active Population: Aged 55-64: All for the United States reached a record high of 27768960.00000 in September of 2019 and a record low of 11126960.00000 in November of 1974. Trading Economics provides the current actual value, an historical data chart and related indicators for Active Population: Aged 55-64: All for the United States - last updated from the United States Federal Reserve on March of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Fishers population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Fishers. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 62,336 (61.77% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fishers Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Working Age Population: Aged 15-64: All for the United States was 205254833.33333 Persons in January of 2021, according to the United States Federal Reserve. Historically, Working Age Population: Aged 15-64: All for the United States reached a record high of 206507750.00000 in January of 2018 and a record low of 101908250.00000 in January of 1960. Trading Economics provides the current actual value, an historical data chart and related indicators for Working Age Population: Aged 15-64: All for the United States - last updated from the United States Federal Reserve on March of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the North Beach population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of North Beach. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,368 (49.40% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Beach Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Atmore, AL population pyramid, which represents the Atmore population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Atmore Population by Age. You can refer the same here
This statistic depicts the age distribution in the United States from 2013 to 2023. In 2023, about 17.59 percent of the U.S. population fell into the 0-14 year category, 64.97 percent into the 15-64 age group and 17.43 percent of the population were over 65 years of age. The increasing population of the United States The United States of America is one of the most populated countries in the world, trailing just behind China and India. A total population count of around 320 million inhabitants and a more-or-less steady population growth over the past decade indicate that the country has steadily improved its living conditions and standards for the population. Leading healthier lifestyles and improved living conditions have resulted in a steady increase of the life expectancy at birth in the United States. Life expectancies of men and women at birth in the United States were at a record high in 2012. Furthermore, a constant fertility rate in recent years and a decrease in the death rate and infant mortality, all due to the improved standard of living and health care conditions, have helped not only the American population to increase but as a result, the share of the population younger than 15 and older than 65 years has also increased in recent years, as can be seen above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Cheney, WA population pyramid, which represents the Cheney population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Cheney Population by Age. You can refer the same here
In 2022, about 17.3 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over.
A rapidly aging population
In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change in order to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well in order to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce.
The future population
It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.