32 datasets found
  1. D

    Ai Assisted Annotation Tools Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Ai Assisted Annotation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/ai-assisted-annotation-tools-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Assisted Annotation Tools Market Outlook



    In 2023, the global AI assisted annotation tools market size was valued at approximately USD 600 million. Propelled by increasing demand for labeled data in machine learning and AI-driven applications, the market is expected to grow at a CAGR of 25% from 2024 to 2032, reaching an estimated market size of USD 3.3 billion by 2032. Factors such as advancements in AI technologies, an upsurge in data generation, and the need for accurate data labeling are fueling this growth.



    The rapid proliferation of AI and machine learning (ML) has necessitated the development of robust data annotation tools. One of the key growth factors is the increasing reliance on AI for commercial and industrial applications, which require vast amounts of accurately labeled data to train AI models. Industries such as healthcare, automotive, and retail are heavily investing in AI technologies to enhance operational efficiencies, improve customer experience, and foster innovation. Consequently, the demand for AI-assisted annotation tools is expected to soar, driving market expansion.



    Another significant growth factor is the growing complexity and volume of data generated across various sectors. With the exponential increase in data, the manual annotation process becomes impractical, necessitating automated or semi-automated tools to handle large datasets efficiently. AI-assisted annotation tools offer a solution by improving the speed and accuracy of data labeling, thereby enabling businesses to leverage AI capabilities more effectively. This trend is particularly pronounced in sectors like IT and telecommunications, where data volumes are immense.



    Furthermore, the rise of personalized and precision medicine in healthcare is boosting the demand for AI-assisted annotation tools. Accurate data labeling is crucial for developing advanced diagnostic tools, treatment planning systems, and patient management solutions. AI-assisted annotation tools help in labeling complex medical data sets, such as MRI scans and histopathological images, ensuring high accuracy and consistency. This demand is further amplified by regulatory requirements for data accuracy and reliability in medical applications, thereby driving market growth.



    The evolution of the Image Annotation Tool has been pivotal in addressing the challenges posed by the increasing complexity of data. These tools have transformed the way industries handle data, enabling more efficient and accurate labeling processes. By automating the annotation of images, these tools reduce the time and effort required to prepare data for AI models, particularly in fields like healthcare and automotive, where precision is paramount. The integration of AI technologies within these tools allows for continuous learning and improvement, ensuring that they can adapt to the ever-changing demands of data annotation. As a result, businesses can focus on leveraging AI capabilities to drive innovation and enhance operational efficiencies.



    From a regional perspective, North America remains the dominant player in the AI-assisted annotation tools market, primarily due to the early adoption of AI technologies and significant investments in AI research and development. The presence of major technology companies and a robust infrastructure for AI implementation further bolster this dominance. However, the Asia Pacific region is expected to witness the highest CAGR during the forecast period, driven by increasing digital transformation initiatives, growing investments in AI, and expanding IT infrastructure.



    Component Analysis



    The AI-assisted annotation tools market is segmented into software and services based on components. The software segment holds a significant share of the market, primarily due to the extensive deployment of annotation software across various industries. These software solutions are designed to handle diverse data types, including text, image, audio, and video, providing a comprehensive suite of tools for data labeling. The continuous advancements in AI algorithms and machine learning models are driving the development of more sophisticated annotation software, further enhancing their accuracy and efficiency.



    Within the software segment, there is a growing trend towards the integration of AI and machine learning capabilities to automate the annotation process. This integration reduces the dependency on manual efforts, significantly improving the speed and s

  2. Video Annotation Services | AI-assisted Labeling | Computer Vision Data |...

    • datarade.ai
    Updated Jan 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). Video Annotation Services | AI-assisted Labeling | Computer Vision Data | Video Labeling for AI & ML | Annotated Imagery Data [Dataset]. https://datarade.ai/data-products/nexdata-video-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 27, 2024
    Dataset authored and provided by
    Nexdata
    Area covered
    United Arab Emirates, Korea (Republic of), Paraguay, Belarus, United Kingdom, Germany, Sri Lanka, Portugal, Montenegro, Chile
    Description
    1. Overview We provide various types of Annotated Imagery Data annotation services, including:
    2. Video classification
    3. Timestamps
    4. Video tracking
    5. Video detection ...
    6. Our Capacity
    7. Platform: Our platform supports human-machine interaction and semi-automatic labeling, increasing labeling efficiency by more than 30% per annotator.It has successfully been applied to nearly 5,000 projects.
    • Annotation Tools: Nexdata's platform integrates 30 sets of annotation templates, covering audio, image, video, point cloud and text.

    -Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.

    -Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001

    1. About Nexdata Nexdata has global data processing centers and more than 20,000 professional annotators, supporting on-demand data annotation services, such as speech, image, video, point cloud and Natural Language Processing (NLP) Data, etc. Please visit us at https://www.nexdata.ai/datasets/computervision?source=Datarade
  3. A

    Ai-assisted Annotation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Ai-assisted Annotation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-assisted-annotation-tools-1428249
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI-assisted annotation tools market is experiencing robust growth, projected to reach $617 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 9.2% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality labeled data to train and improve the accuracy of machine learning (ML) and artificial intelligence (AI) models across diverse sectors, including autonomous vehicles, medical imaging, and natural language processing. Key drivers include the rising complexity of AI algorithms requiring larger and more precisely annotated datasets, the limitations of manual annotation in terms of speed and cost-effectiveness, and the emergence of innovative annotation tools that leverage AI to automate and accelerate the process. The market is segmented by annotation type (image, text, video, etc.), deployment mode (cloud, on-premise), industry vertical (automotive, healthcare, etc.), and geographic region. Leading players like NVIDIA, DataGym, and Scale AI are actively innovating to offer advanced features such as automated labeling, quality control, and collaborative annotation platforms, fostering market competition and driving further advancements. The market's growth trajectory is influenced by several trends. The increasing adoption of cloud-based annotation platforms offers scalability and accessibility to a broader range of users. Furthermore, the development of more sophisticated AI algorithms for automated annotation, coupled with advancements in computer vision and natural language processing, significantly improves the efficiency and accuracy of data annotation. However, challenges such as data security and privacy concerns, the need for skilled personnel to oversee and validate AI-assisted annotation, and the high initial investment costs for implementing these tools can act as potential restraints. Despite these challenges, the long-term outlook for the AI-assisted annotation tools market remains highly positive, driven by the continued expansion of the AI industry and the growing reliance on high-quality labeled data for successful AI model development. The market is expected to witness significant expansion across regions, particularly in North America and Europe, owing to the high concentration of AI research and development activities.

  4. Image Annotation Services | Image Labeling for AI & ML |Computer Vision...

    • datarade.ai
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2023). Image Annotation Services | Image Labeling for AI & ML |Computer Vision Data| Annotated Imagery Data [Dataset]. https://datarade.ai/data-products/nexdata-image-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    Nexdata
    Area covered
    Uzbekistan, Montenegro, Taiwan, Philippines, Qatar, Morocco, United States of America, Korea (Republic of), Jamaica, Ireland
    Description
    1. Overview We provide various types of Annotated Imagery Data annotation services, including:
    2. Bounding box
    3. Polygon
    4. Segmentation
    5. Polyline
    6. Key points
    7. Image classification
    8. Image description ...
    9. Our Capacity
    10. Platform: Our platform supports human-machine interaction and semi-automatic labeling, increasing labeling efficiency by more than 30% per annotator.It has successfully been applied to nearly 5,000 projects.
    • Annotation Tools: Nexdata's platform integrates 30 sets of annotation templates, covering audio, image, video, point cloud and text.

    -Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.

    -Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001

    1. About Nexdata Nexdata has global data processing centers and more than 20,000 professional annotators, supporting on-demand data annotation services, such as speech, image, video, point cloud and Natural Language Processing (NLP) Data, etc. Please visit us at https://www.nexdata.ai/computerVisionTraining?source=Datarade
  5. D

    Data Annotation and Labeling Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Annotation and Labeling Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/data-annotation-and-labeling-tool-531813
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data annotation and labeling tools market is experiencing robust growth, driven by the escalating demand for high-quality training data in the burgeoning fields of artificial intelligence (AI) and machine learning (ML). The market's expansion is fueled by the increasing adoption of AI across diverse sectors, including autonomous vehicles, healthcare, and finance. These industries require vast amounts of accurately labeled data to train their AI models, leading to a significant surge in the demand for efficient and scalable annotation tools. While precise market sizing for 2025 is unavailable, considering a conservative estimate and assuming a CAGR of 25% (a reasonable figure given industry growth), we can project a market value exceeding $2 billion in 2025, rising significantly over the forecast period (2025-2033). Key trends include the growing adoption of cloud-based solutions, increased automation in the annotation process through AI-assisted tools, and a heightened focus on data privacy and security. The rise of synthetic data generation is also beginning to impact the market, offering potential cost savings and improved data diversity. However, challenges remain. The high cost of skilled annotators, the need for continuous quality control, and the inherent complexities of labeling diverse data types (images, text, audio, video) pose significant restraints on market growth. While leading players like Labelbox, Scale AI, and SuperAnnotate dominate the market with advanced features and robust scalability, smaller companies and open-source tools continue to compete, often focusing on niche applications or offering cost-effective alternatives. The competitive landscape is dynamic, with continuous innovation and mergers and acquisitions shaping the future of this rapidly evolving market. Regional variations in adoption are also expected, with North America and Europe likely leading the market, followed by Asia-Pacific and other regions. This continuous evolution necessitates careful strategic planning and adaptation for businesses operating in or considering entry into this space.

  6. Video Annotation Services | AI-assisted Labeling | Computer Vision Data |...

    • data.nexdata.ai
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). Video Annotation Services | AI-assisted Labeling | Computer Vision Data | Video Labeling for AI & ML | Annotated Imagery Data [Dataset]. https://data.nexdata.ai/products/nexdata-video-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset authored and provided by
    Nexdata
    Area covered
    North Macedonia, Hungary, Belgium, Uzbekistan, Venezuela, Iraq, Uruguay, Colombia, Peru, Pakistan
    Description

    Nexdata provides high-quality Annotated Imagery Data annotation for video classification, timestamps, video tracking and detection.

  7. D

    Data Collection and Labeling Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Collection and Labeling Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-collection-and-labeling-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Mar 7, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Collection and Labeling Market Outlook 2032



    The global data collection and labeling market size was USD 27.1 Billion in 2023 and is likely to reach USD 133.3 Billion by 2032, expanding at a CAGR of 22.4 % during 2024–2032. The market growth is attributed to the increasing demand for high-quality labeled datasets to train artificial intelligence and machine learning algorithms across various industries.



    Growing adoption of AI in e-commerce is projected to drive the market in the assessment year. E-commerce platforms rely on high-quality images to showcase products effectively and improve the online shopping experience for customers. Accurately labeled images enable better product categorization and search optimization, driving higher conversion rates and customer engagement.



    Rising adoption of AI in the financial sector is a significant factor boosting the need for data collection and labeling services for tasks such as fraud detection, risk assessment, and algorithmic trading. Financial institutions leverage labeled datasets to train AI models to analyze vast amounts of transactional data, identify patterns, and detect anomalies indicative of fraudulent activity.





    Impact of Artificial Intelligence (AI) in Data Collection and Labeling Market



    The use of artificial intelligence is revolutionizing the way labeled datasets are created and utilized. With the advancements in AI technologies, such as computer vision and natural language processing, the demand for accurately labeled datasets has surged across various industries.



    AI algorithms are increasingly being leveraged to automate and streamline the data labeling process, reducing the manual effort required and improving efficiency. For instance,





    • In April 2022, Encord, a startup, introduced its beta version of CordVision, an AI-assisted labeling application that inten

  8. Audio Annotation Services | AI-assisted Labeling |Speech Data | AI Training...

    • datarade.ai
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2023). Audio Annotation Services | AI-assisted Labeling |Speech Data | AI Training Data | Natural Language Processing (NLP) Data [Dataset]. https://datarade.ai/data-products/nexdata-audio-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    Nexdata
    Area covered
    Thailand, Bulgaria, Australia, Spain, Korea (Republic of), Austria, Belarus, Lithuania, Ukraine, Cyprus
    Description
    1. Overview We provide various types of Natural Language Processing (NLP) Data services, including:
    2. Audio cleaning
    3. Speech annotation
    4. Speech transcription
    5. Noise Annotation
    6. Phoneme segmentation
    7. Prosodic annotation
    8. Part-of-speech tagging ...
    9. Our Capacity
    10. Platform: Our platform supports human-machine interaction and semi-automatic labeling, increasing labeling efficiency by more than 30% per annotator.It has successfully been applied to nearly 5,000 projects.
    • Annotation Tools: Nexdata's platform integrates 30 sets of annotation templates, covering audio, image, video, point cloud and text.

    -Secure Implementation: NDA is signed to gurantee secure implementation and data is destroyed upon delivery.

    -Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001

    1. About Nexdata Nexdata has global data processing centers and more than 20,000 professional annotators, supporting on-demand data annotation services, such as speech, image, video, point cloud and Natural Language Processing (NLP) Data, etc. Please visit us at https://www.nexdata.ai/datasets/speechrecog?=Datarade
  9. Image Annotation Services | Image Labeling for AI & ML |Computer Vision...

    • data.nexdata.ai
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). Image Annotation Services | Image Labeling for AI & ML |Computer Vision Data| Annotated Imagery Data [Dataset]. https://data.nexdata.ai/products/nexdata-image-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset authored and provided by
    Nexdata
    Area covered
    Greece, Belgium, Thailand, Colombia, Singapore, Puerto Rico, Croatia, Kyrgyzstan, Japan, Nicaragua
    Description

    Nexdata provides high-quality Annotated Imagery Data annotation for bounding box, polygon,segmentation,polyline, key points,image classification and image description. We have handled tons of data for autonomous driving, internet entertainment, retail, surveillance and security and etc.

  10. D

    Data Labeling Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Labeling Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-labeling-tools-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Labeling Tools Market Outlook



    The global data labeling tools market size was valued at approximately USD 1.6 billion in 2023, and it is anticipated to reach around USD 8.5 billion by 2032, growing at a robust CAGR of 20.3% over the forecast period. The rapid expansion of the data labeling tools market can be attributed to the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies across various industries, coupled with the growing need for annotated data to train AI models accurately.



    One of the primary growth factors driving the data labeling tools market is the exponential increase in data generation across industries. As organizations collect vast amounts of data, the need for structured and annotated data becomes paramount to derive actionable insights. Data labeling tools play a crucial role in categorizing and tagging this data, thus enabling more effective data utilization in AI and ML applications. Furthermore, the rising investments in AI technologies by both private and public sectors have significantly boosted the demand for data labeling solutions.



    Another significant growth factor is the advancements in natural language processing (NLP) and computer vision technologies. These advancements have heightened the demand for high-quality labeled data, particularly in sectors like healthcare, retail, and automotive. For instance, in the healthcare sector, data labeling is essential for developing AI models that can assist in diagnostics and treatment planning. Similarly, in the automotive industry, labeled data is crucial for enhancing autonomous driving technologies. The ongoing advancements in these areas continue to fuel the market growth for data labeling tools.



    Additionally, the increasing trend of remote work and the emergence of digital platforms have also contributed to the market's growth. With more businesses shifting to online operations and remote work environments, the need for AI-driven tools to manage and analyze data has become more critical. Data labeling tools have emerged as vital components in this digital transformation, enabling organizations to maintain productivity and efficiency. The growing reliance on digital platforms further accentuates the necessity for accurate data annotation, thereby propelling the market forward.



    Data Annotation Tools are pivotal in the realm of AI and ML, serving as the backbone for creating high-quality labeled datasets. These tools streamline the process of annotating data, making it more efficient and less prone to human error. With the rise of AI applications across various sectors, the demand for sophisticated data annotation tools has surged. They not only enhance the accuracy of AI models but also significantly reduce the time required for data preparation. As organizations strive to harness the full potential of AI, the role of data annotation tools becomes increasingly crucial, ensuring that the data fed into AI systems is both accurate and reliable.



    From a regional perspective, North America holds the largest share in the data labeling tools market due to the early adoption of AI and ML technologies and the presence of major technology companies. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by the rapid digitalization, increasing investments in AI research, and the growing presence of AI startups. Europe, Latin America, and the Middle East & Africa are also witnessing significant growth, albeit at a slower pace, due to the rising awareness and adoption of data labeling solutions.



    Type Analysis



    The data labeling tools market is segmented into various types, including image, text, audio, and video labeling tools. Image labeling tools hold a significant market share owing to the extensive use of computer vision applications in various industries such as healthcare, automotive, and retail. These tools are essential for training AI models to recognize and categorize visual data, making them indispensable for applications like medical imaging, autonomous vehicles, and facial recognition. The growing demand for high-quality labeled images is a key driver for this segment.



    Text labeling tools are another critical segment, driven by the increasing adoption of NLP technologies. Text data labeling is vital for applications such as sentiment analysis, chatbots, and language translation services. With the proliferation of text-based d

  11. Audio Annotation Services | AI-assisted Labeling |Speech Data | AI Training...

    • data.nexdata.ai
    Updated Aug 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). Audio Annotation Services | AI-assisted Labeling |Speech Data | AI Training Data | Natural Language Processing (NLP) Data [Dataset]. https://data.nexdata.ai/products/nexdata-audio-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset authored and provided by
    Nexdata
    Area covered
    United States, United Kingdom, Kuwait, Sweden, Netherlands, Iraq, Kyrgyzstan, Belgium, Panama, Cyprus
    Description

    Nexdata provides high-quality Speech Data services for speech cleaning, speech transcription, phoneme annotation etc, with word accuracy of 99.5% and phoneme segmentation of 0.01s.

  12. R

    AI in Data Annotation Market Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). AI in Data Annotation Market Market Research Report 2033 [Dataset]. https://researchintelo.com/report/ai-in-data-annotation-market-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    AI in Data Annotation Market Outlook



    As per our latest research, the global AI in Data Annotation market size reached USD 2.6 billion in 2024, reflecting the accelerating adoption of artificial intelligence and machine learning across industries. The market is projected to grow at a robust CAGR of 25.8% from 2025 to 2033, with the market value expected to reach approximately USD 18.3 billion by 2033. This remarkable growth is primarily driven by the increasing demand for high-quality labeled datasets to train sophisticated AI models, particularly in sectors such as healthcare, autonomous vehicles, and retail. As organizations continue to invest in automation and intelligent systems, the need for scalable, accurate, and efficient data annotation solutions is set to surge, underpinning the long-term expansion of this market.



    One of the most significant growth factors for the AI in Data Annotation market is the rapid evolution and deployment of artificial intelligence and machine learning technologies across diverse industries. As AI algorithms become more advanced, the requirement for accurately labeled data grows exponentially. Industries such as healthcare rely on annotated medical images and records to enhance diagnostic accuracy and accelerate drug discovery, while the automotive sector depends on labeled video and image data for the development of autonomous driving systems. The expansion of AI-powered virtual assistants, chatbots, and recommendation engines in retail and BFSI further elevates the importance of robust data annotation, ensuring that algorithms can interpret and respond to human inputs with precision. The proliferation of big data, combined with the increasing complexity of AI applications, is making data annotation an indispensable part of the AI development lifecycle.



    Technological advancements in annotation tools and the integration of automation are also fueling market growth. The emergence of AI-assisted annotation platforms, which leverage natural language processing and computer vision, has significantly improved the speed and accuracy of data labeling. These platforms can automatically pre-label large datasets, reducing the manual effort required and minimizing human error. Additionally, the adoption of cloud-based annotation solutions enables organizations to scale their data labeling operations efficiently, supporting remote collaboration and real-time quality control. As more enterprises recognize the value of well-annotated data in gaining a competitive edge, investments in advanced annotation software and services are expected to rise, further propelling market expansion.



    Another critical driver is the increasing emphasis on data privacy and regulatory compliance, particularly in sectors handling sensitive information. Organizations are seeking annotation solutions that ensure data security, confidentiality, and compliance with global regulations such as GDPR and HIPAA. This has led to the development of secure, on-premises annotation platforms and privacy-preserving techniques, such as federated learning and differential privacy. As regulatory scrutiny intensifies and data breaches become more commonplace, the demand for compliant and secure data annotation services is anticipated to witness substantial growth. The focus on ethical AI development, transparency, and bias mitigation also underscores the need for high-quality, unbiased labeled data, further supporting the expansion of the AI in Data Annotation market.



    Regionally, North America continues to dominate the AI in Data Annotation market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of major AI technology companies, robust research and development infrastructure, and early adoption of advanced analytics solutions are key factors driving market growth in North America. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by increasing investments in AI, rapid digital transformation, and the expansion of the IT and telecom sector. Europe remains a significant market, supported by strong regulatory frameworks and a focus on ethical AI. Latin America and the Middle East & Africa are also witnessing steady growth, driven by government initiatives and the adoption of AI in various industries.



    Component Analysis



    The AI in Data Annotation market is segmented by component into Software and Services, each playing a pivotal role in supporting the diverse needs of organizations e

  13. Ai Data Labeling Solution Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Ai Data Labeling Solution Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/ai-data-labeling-solution-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Data Labeling Solution Market Outlook



    The global AI Data Labeling Solution market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 6.2 billion by 2032, at a compound annual growth rate (CAGR) of 17.2% during the forecast period. This impressive growth is fueled primarily by the expanding use of AI and machine learning technologies across various industries, which necessitates vast amounts of accurately labeled data to train algorithms. The increasing adoption of artificial intelligence (AI) and machine learning (ML) in sectors such as healthcare, automotive, and retail is significantly driving this market's expansion.



    One of the major growth factors of the AI Data Labeling Solution market is the surging demand for high-quality training data, which is indispensable for the development of robust AI models. Companies are increasingly investing in data labeling solutions to enhance the accuracy and reliability of their AI applications. Additionally, the rise of autonomous systems, such as self-driving cars and drones, which require real-time, precise data annotation, is further propelling market growth. The proliferation of big data, along with advances in deep learning technologies, is also contributing to the demand for sophisticated data labeling solutions.



    Another significant driver is the continuous advancement in AI and ML technologies, which necessitates the use of specialized labeling techniques to handle complex data types and structures. This has led to the development and deployment of innovative labeling solutions, such as semi-supervised and automatic labeling, which offer improved efficiency and accuracy. The integration of AI in various business operations to achieve automation, enhance customer experience, and gain competitive advantage is also pushing companies to adopt advanced data labeling solutions.



    Moreover, the increasing investments and funding in AI startups and companies specializing in data annotation are creating a conducive environment for the growth of the AI Data Labeling Solution market. Governments and private organizations are recognizing the strategic importance of AI, leading to increased funding and grants for research and development in this field. Additionally, the growing collaboration between AI technology providers and end-user industries is facilitating the adoption of tailored data labeling solutions to meet specific industry needs.



    Component Analysis



    In the AI Data Labeling Solution market, the component segment is bifurcated into software and services. The software segment encompasses various tools and platforms used for data annotation, while the services segment includes professional and managed services offered by companies to assist in data labeling processes. The software segment is anticipated to dominate the market, driven by the increasing demand for automated and semi-automated labeling tools that enhance efficiency and accuracy. These software solutions often come with advanced features such as machine learning integration, real-time collaboration, and analytics, which are crucial for handling large volumes of data.



    The services segment, while smaller compared to software, is expected to witness substantial growth due to the increasing need for expert assistance in data labeling. Companies are increasingly outsourcing their data annotation tasks to specialized service providers to save time and resources. Services such as data cleaning, annotation, and validation are essential for ensuring high-quality labeled data, which is critical for the performance of AI models. Moreover, the complexity of certain data labeling tasks, particularly in industries like healthcare and automotive, often necessitates the expertise of professional service providers.



    To cope with the growing demand for high-quality labeled data, many service providers are adopting hybrid models that combine manual and automated labeling techniques. This approach not only improves accuracy but also reduces the time and cost associated with data annotation. The integration of AI and ML in labeling services is another trend gaining traction, as it allows for the continuous improvement of labeling processes and outcomes. Additionally, the rising trend of custom labeling solutions tailored to specific industry requirements is further driving the growth of the services segment.



    In summary, while the software segment holds the majority share in the AI Data Labeling Solution market, the services segment is also poised for significant growth. Both segments play a crucial

  14. D

    Manual Data Annotation Tools Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Manual Data Annotation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/manual-data-annotation-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Manual Data Annotation Tools Market Outlook



    In 2023, the global market size for manual data annotation tools is estimated at USD 1.2 billion, and it is projected to reach approximately USD 5.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 18.3%. The burgeoning demand for high-quality annotated data to train machine learning models and enhance AI capabilities is a significant growth factor driving this market. As industries increasingly adopt AI and machine learning technologies, the need for accurate and comprehensive data annotation tools has become paramount, propelling the market to unprecedented heights.



    The rapid expansion of artificial intelligence and machine learning applications across various industries is one of the primary growth drivers for the manual data annotation tools market. High-quality labeled data is crucial for training sophisticated AI models, which in turn fuels the demand for efficient and effective annotation tools. Industries such as healthcare, automotive, and retail are leveraging AI to enhance operational efficiency and customer experience, further amplifying the need for advanced data annotation solutions.



    Technological advancements in data annotation tools are also significantly contributing to market growth. Innovations such as AI-assisted annotation, improved user interfaces, and integration capabilities with other data management platforms have made these tools more user-friendly and efficient. As a result, even organizations with limited technical expertise can now leverage these tools to annotate large datasets accurately, thereby accelerating the adoption and expansion of data annotation tools globally.



    The increasing prevalence of big data analytics is another critical factor driving market growth. Organizations are generating and collecting vast amounts of data daily, and the ability to annotate and analyze this data effectively is essential for extracting actionable insights. Manual data annotation tools play a crucial role in this process by providing the necessary infrastructure to label and categorize data accurately, enabling organizations to harness the full potential of their data assets.



    Data Collection And Labelling are foundational processes in the realm of AI and machine learning. As the volume of data generated by businesses and individuals continues to grow exponentially, the need for effective data collection and labeling becomes increasingly critical. This process involves gathering raw data and meticulously annotating it to create structured datasets that can be used to train machine learning models. The accuracy of data labeling directly impacts the performance of AI systems, making it a crucial step in developing reliable and efficient AI solutions. In sectors like healthcare and automotive, where precision is paramount, the demand for robust data collection and labeling practices is particularly high, driving innovation and investment in this area.



    From a regional perspective, North America currently holds the largest market share, driven by the high adoption rates of AI and machine learning technologies, significant investment in research and development, and the presence of key market players in the region. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the rapid digital transformation, increased investment in AI technologies, and the growing need for data annotation services in emerging economies such as China and India.



    Type Analysis



    Text annotation tools are a critical segment within the manual data annotation tools market. These tools enable the labeling of text data, which is essential for applications such as natural language processing (NLP), sentiment analysis, and chatbots. As the demand for NLP applications grows, so does the need for efficient text annotation tools. Companies are increasingly leveraging these tools to improve their customer service, automate responses, and enhance user experience, thereby driving the segment's growth.



    Image annotation tools form another significant segment in the market. These tools are used to label and categorize images, which is vital for training computer vision models. The automotive industry heavily relies on image annotation for developing autonomous driving systems, which need accurately labeled images to recognize objects and make decisions in real time. Additionally, sectors such

  15. Annotation Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Annotation Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/annotation-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Annotation Software Market Outlook



    The global annotation software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12% during the forecast period. The market growth is driven by the escalating need for data labeling in machine learning models and the increasing adoption of AI across various industries.



    The annotation software market is experiencing robust growth due to the burgeoning demand for annotated data in machine learning and artificial intelligence applications. As industries increasingly integrate AI and machine learning into their operations, the necessity for accurately labeled data has never been higher. This surge is particularly notable in sectors such as healthcare, where annotated data is pivotal for training diagnostic algorithms, and in autonomous driving technology, which requires extensive data labeling for object recognition and decision-making processes. Consequently, the annotation software market is poised for significant expansion, fueled by these technological advancements and the growing reliance on AI-driven solutions.



    Additionally, the proliferation of big data and the escalating volume of unstructured data are further propelling the demand for annotation software. Organizations are recognizing the value of harnessing this data to gain actionable insights and enhance decision-making processes. Annotation software plays a crucial role in transforming raw data into structured, labeled datasets that can be effectively utilized for various analytical and predictive purposes. This trend is particularly prominent in industries such as finance and retail, where accurate data labeling is essential for tasks such as fraud detection, customer sentiment analysis, and personalized marketing strategies. As a result, the annotation software market is witnessing substantial growth as businesses strive to leverage the potential of big data for competitive advantage.



    Moreover, the increasing emphasis on automation and efficiency in data processing workflows is driving the adoption of annotation software solutions. Manual data labeling is a time-consuming and labor-intensive process, leading organizations to seek automated annotation tools that can streamline and expedite the labeling process. These software solutions offer advanced features such as machine learning-assisted labeling, collaborative annotation capabilities, and integration with existing data management systems, enabling organizations to achieve higher productivity and accuracy in their data annotation efforts. As the demand for efficient data processing continues to rise, the annotation software market is expected to witness sustained growth, driven by the need for automation and improved operational efficiency.



    Regionally, North America is expected to dominate the annotation software market, owing to its strong technological infrastructure and the presence of key market players. The region's advanced IT ecosystem and high adoption rate of AI and machine learning technologies contribute significantly to market growth. Additionally, the Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, driven by rapid industrialization, increasing investments in AI research and development, and the growing focus on digital transformation across various sectors. Europe, Latin America, and the Middle East & Africa also present substantial growth opportunities, supported by favorable government initiatives, expanding AI adoption, and increasing awareness of the benefits of data annotation in these regions.



    Screen Writing and Annotation Software have become increasingly intertwined, especially as the demand for multimedia content grows. Screenwriters and content creators are leveraging annotation software to enhance their scripts and storyboards with detailed notes and visual cues. This integration allows for a more dynamic and interactive approach to storytelling, enabling writers to collaborate more effectively with directors, producers, and other team members. By utilizing annotation tools, screenwriters can ensure that their creative vision is accurately conveyed and understood by all stakeholders involved in the production process. This trend is particularly evident in the film and television industry, where the need for precise communication and collaboration is paramount to the success of any project.



    Component Analysis



    The a

  16. Analysis Syntax and Cleaned Data

    • figshare.com
    txt
    Updated Jun 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christen Buckley (2024). Analysis Syntax and Cleaned Data [Dataset]. http://doi.org/10.6084/m9.figshare.26046361.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 16, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Christen Buckley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study explores the use of AI within narrative messages about corporate social responsibility (CSR) initiatives, building on theories of narrative communication and expectancy violation theory (EVT). A 2 (message type: narrative vs. expository) x 4 (source label: human, AI-assisted human, AI, no source) between-subjects online experiment (n = 277) investigated how various AI and human source labels used in narrative or expository messaging impacted stakeholder perceptions and behavioral intentions. Results indicate that AI source labels elicited lower perceived message transparency (accuracy and disclosure) and organizational transparency than human source labels but did not otherwise impact stakeholder perceptions or behavioral intentions. Moreover, exposure to narrative (vs. expository messaging) generated higher perceptions of message transparency (accuracy and clarity) and organizational transparency. Theoretically, these findings contribute to narrative and EVT research in strategic communication and provide a novel examination of AI disclosure in CSR storytelling. Practically, findings provide insight for practitioners regarding stakeholders’ responses, or lack thereof, to the disclosure of AI use in strategic storytelling.

  17. m

    SmartEars: A Practical Framework for Poultry Respiratory Monitoring via...

    • data.mendeley.com
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Junxian Huang (2025). SmartEars: A Practical Framework for Poultry Respiratory Monitoring via Spectrogram-Based Audio Classification and AI-Assisted Labeling [Dataset]. http://doi.org/10.17632/dy6gtvt4mk.2
    Explore at:
    Dataset updated
    Apr 21, 2025
    Authors
    Junxian Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sound datasets from real farming environments are scarce, prompting us to release a portion of 5-second data segments with labels after multiple rounds of data cleaning. We have disclosed 2,000 segments for each of the three categories (Healthy, Sick, None - no chicken sound), totaling 6,000 five-second audio clips. We make this dataset publicly available, to contribute to the advancements in research related to the detection of respiratory diseases based on poultry vocalizations.

    In large-scale poultry farming, respiratory diseases affect the health of chickens, leading to a decline in the quality and yield of both meat and eggs. Effective monitoring of these diseases is crucial to reducing their impact and enhancing the quality and yield. Currently, most monitoring methods still rely on manually monitoring chicken vocalizations, which are time-consuming, labor-intensive, and require specialized personnel, making 24/7 monitoring unfeasible. Existing intelligent methods are often limited to laboratory environments where individual chickens are monitored separately. These approaches do not meet the industrial and commercial requirements of poultry farms, where a diverse set of complex auditory signals may be captured. These signals include not only chicken vocalizations but also complex noises from cages, chicken behaviors, human activities, mechanical ventilation systems, and other backgrounds noises. In this study, we design a deep learning-based intelligent recognition algorithm capable of accurately distinguishing abnormal chicken vocalizations among complex sound signals. Furthermore, we integrate this algorithm into a distributed health monitoring system - SmartEars, enabling continuous collection of various sound signals and performing real-time recognitions, thereby providing round-the-clock monitoring of the respiratory diseases of chickens in real production environments. We collected 11,686 audio slices from actual farming environments, which were labeled through multiple rounds of annotations by veterinary experts, resulting in a high-quality dataset for model training. Additionally, we used Logfbank to capture critical audio features to assist model learning. We also designed five data augmentation techniques to prevent overfitting and improve model performance. Finally, we compared multiple models on an independent test dataset and selected RegNet as the best model, which achieved the highest accuracy of 96.03%. To validate the effectiveness of our approach, we compared the annotation results of SmartEars with seven veterinarians over the same dataset. The results demonstrated that SmartEars with an accuracy of 93% outperformed human veterinary experts with accuracy from 85% to 93%. SmartEars has been deployed in 3 large poultry farms located in Hebei, China, and it has successfully identified a number of outbursts of chicken diseases, such as a confirmed event around March 19, 2024, demonstrating the effectiveness of SmartEars.

  18. Standardized Labeling Guidelines and Quantitative Content Analysis of New...

    • zenodo.org
    png, zip
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian T. Horan; Brian T. Horan; Kara Sulia; Kara Sulia; Nick P. Bassill; Nick P. Bassill; Christopher D. Thorncroft; Carly Sutter; Carly Sutter; Aaron Evans; Aaron Evans; Christopher Wirz; Christopher Wirz; Jacob Radford; Jacob Radford; Christopher D. Thorncroft (2025). Standardized Labeling Guidelines and Quantitative Content Analysis of New York State Mesonet Daytime Camera Images [Dataset]. http://doi.org/10.5281/zenodo.15482632
    Explore at:
    png, zipAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Brian T. Horan; Brian T. Horan; Kara Sulia; Kara Sulia; Nick P. Bassill; Nick P. Bassill; Christopher D. Thorncroft; Carly Sutter; Carly Sutter; Aaron Evans; Aaron Evans; Christopher Wirz; Christopher Wirz; Jacob Radford; Jacob Radford; Christopher D. Thorncroft
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description
    The New York State Mesonet (NYSM, nysmesonet.org) captures and archives images every 5 minutes during the daytime from a suite of 127 surface-based cameras. The images are used to create a hand-labeled dataset of current precipitation conditions visible within the image: 1) Clear, 2) Rain, 3) Snow, or 4) Obstructed. Five Labelers (authors Horan, Wirz, Sutter, Evans, and Radford) performed a series of 2 labeling trials where reliability was assessed using the metric Krippendorff’s alpha (Hayes and and Krippendorff 2007). A website created by Dr. Freelon (Freelon, 2013; Freelon, 2010) is used to calculate metrics after labeling, which include Krippendorff’s alpha. This work follows a framework for Qualitative Content Analysis for trustworthy AI in Earth system science (Wirz et al. 2024), which follows recommendations for generating trust, and trustworthiness, in AI for the environmental sciences (Bostrom et al. 2024). This work also closely follows, and takes inspiration from, the framework set forth in Sutter et al. (2023), which performed a similar methodology for New York State Department of Transportation images. The group of labelers reaches a Krippendorff’s alpha of 0.926 on the second trial across 30 trials, or 150 total decisions. Shared in this dataset is the codebook used to assist in label decision making, examples for each class in the codebook, including difficult cases, images used for inter-coder reliability trials, and spreadsheets with inter-coder reliability results and statistics. For inter-coder reliability trials, the images are supplemented with NYSM data and co-located ASOS data (ASOS Tech. Note, 1998).

    The purpose of this work is to create a trustworthy dataset using preset labeling techniques to create a large dataset for use in a supervised machine learning model. This model aims to predict current precipitation type (if occurring) and to provide nowcasting output of all 127 NYSM standard sites. Additional image data and standard site data is accessible via nysmesonet.org via request. Included with this dataset are also figures that show the completed distribution of data, which will be used in machine learning.

    This material is based on work supported by the U.S. National Science Foundation under Grant No. RISE-2019758

  19. f

    DataSheet2_AI Models to Assist Vancomycin Dosage Titration.docx

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhiyu Wang; Chiat Ling Jasmine Ong; Zhiyan Fu (2023). DataSheet2_AI Models to Assist Vancomycin Dosage Titration.docx [Dataset]. http://doi.org/10.3389/fphar.2022.801928.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers
    Authors
    Zhiyu Wang; Chiat Ling Jasmine Ong; Zhiyan Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Effective treatment using antibiotic vancomycin requires close monitoring of serum drug levels due to its narrow therapeutic index. In the current practice, physicians use various dosing algorithms for dosage titration, but these algorithms reported low success in achieving therapeutic targets. We explored using artificial intelligent to assist vancomycin dosage titration.Methods: We used a novel method to generate the label for each record and only included records with appropriate label data to generate a clean cohort with 2,282 patients and 7,912 injection records. Among them, 64% of patients were used to train two machine learning models, one for initial dose recommendation and another for subsequent dose recommendation. The model performance was evaluated using two metrics: PAR, a pharmacology meaningful metric defined by us, and Mean Absolute Error (MAE), a commonly used regression metric.Results: In our 3-year data, only a small portion (34.1%) of current injection doses could reach the desired vancomycin trough level (14–20 mcg/ml). Both PAR and MAE of our machine learning models were better than the classical pharmacokinetic models. Our model also showed better performance than the other previously developed machine learning models in our test data.Conclusion: We developed machine learning models to recommend vancomycin dosage. Our results show that the new AI-assisted dosage titration approach has the potential to improve the traditional approaches. This is especially useful to guide decision making for inexperienced doctors in making consistent and safe dosing recommendations for high-risk medications like vancomycin.

  20. d

    Systematic review data for the IMPROVE project - Dataset - B2FIND

    • b2find.dkrz.de
    • b2find.eudat.eu
    Updated Aug 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Systematic review data for the IMPROVE project - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/641fdd9d-fbaa-5cb9-acc7-ea00a957c2bd
    Explore at:
    Dataset updated
    Aug 10, 2025
    Description

    The EU-funded IMPROVE project seeks to build a platform that enables the smart use of patient-generated health data (PGHD), thereby enhancing digital healthcare efficiency. This dataset results from a large-scale systematic literature search carried out within the IMPROVE project, concerning the use of PGHD in treatments of five categories of chronic diseases: cardiovascular disease, chronic inflammation, neurology, oncology, and ophthalmology. Specifically, the dataset contains the metadata of 12.473 studies returned by databases, such as title, abstract and DOI, as well as inclusion decisions. It can be used to aid the understanding of PGHD use in healthcare and the development of AI-assisted systematic review tools. The screening process contained various screening steps and quality checks, which are described in a data paper that will be published later. As soon as it is published, we will reference it here. The file IMPROVE_all_screening_labels_2019_2024.xlsx contains 2 tabs: - Data: this tab contains all the metadata and labeling decisions for all records. - Codebook: this tab contains the description of all columns in the data tab. For those without access to excel, we included the files IMPROVE_all_screening_labels_2019_2024.csv and Codebook.pdf. These are exact copies of the excel file, but without the formatting for the csv file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Ai Assisted Annotation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/ai-assisted-annotation-tools-market

Ai Assisted Annotation Tools Market Report | Global Forecast From 2025 To 2033

Explore at:
pdf, pptx, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

AI Assisted Annotation Tools Market Outlook



In 2023, the global AI assisted annotation tools market size was valued at approximately USD 600 million. Propelled by increasing demand for labeled data in machine learning and AI-driven applications, the market is expected to grow at a CAGR of 25% from 2024 to 2032, reaching an estimated market size of USD 3.3 billion by 2032. Factors such as advancements in AI technologies, an upsurge in data generation, and the need for accurate data labeling are fueling this growth.



The rapid proliferation of AI and machine learning (ML) has necessitated the development of robust data annotation tools. One of the key growth factors is the increasing reliance on AI for commercial and industrial applications, which require vast amounts of accurately labeled data to train AI models. Industries such as healthcare, automotive, and retail are heavily investing in AI technologies to enhance operational efficiencies, improve customer experience, and foster innovation. Consequently, the demand for AI-assisted annotation tools is expected to soar, driving market expansion.



Another significant growth factor is the growing complexity and volume of data generated across various sectors. With the exponential increase in data, the manual annotation process becomes impractical, necessitating automated or semi-automated tools to handle large datasets efficiently. AI-assisted annotation tools offer a solution by improving the speed and accuracy of data labeling, thereby enabling businesses to leverage AI capabilities more effectively. This trend is particularly pronounced in sectors like IT and telecommunications, where data volumes are immense.



Furthermore, the rise of personalized and precision medicine in healthcare is boosting the demand for AI-assisted annotation tools. Accurate data labeling is crucial for developing advanced diagnostic tools, treatment planning systems, and patient management solutions. AI-assisted annotation tools help in labeling complex medical data sets, such as MRI scans and histopathological images, ensuring high accuracy and consistency. This demand is further amplified by regulatory requirements for data accuracy and reliability in medical applications, thereby driving market growth.



The evolution of the Image Annotation Tool has been pivotal in addressing the challenges posed by the increasing complexity of data. These tools have transformed the way industries handle data, enabling more efficient and accurate labeling processes. By automating the annotation of images, these tools reduce the time and effort required to prepare data for AI models, particularly in fields like healthcare and automotive, where precision is paramount. The integration of AI technologies within these tools allows for continuous learning and improvement, ensuring that they can adapt to the ever-changing demands of data annotation. As a result, businesses can focus on leveraging AI capabilities to drive innovation and enhance operational efficiencies.



From a regional perspective, North America remains the dominant player in the AI-assisted annotation tools market, primarily due to the early adoption of AI technologies and significant investments in AI research and development. The presence of major technology companies and a robust infrastructure for AI implementation further bolster this dominance. However, the Asia Pacific region is expected to witness the highest CAGR during the forecast period, driven by increasing digital transformation initiatives, growing investments in AI, and expanding IT infrastructure.



Component Analysis



The AI-assisted annotation tools market is segmented into software and services based on components. The software segment holds a significant share of the market, primarily due to the extensive deployment of annotation software across various industries. These software solutions are designed to handle diverse data types, including text, image, audio, and video, providing a comprehensive suite of tools for data labeling. The continuous advancements in AI algorithms and machine learning models are driving the development of more sophisticated annotation software, further enhancing their accuracy and efficiency.



Within the software segment, there is a growing trend towards the integration of AI and machine learning capabilities to automate the annotation process. This integration reduces the dependency on manual efforts, significantly improving the speed and s

Search
Clear search
Close search
Google apps
Main menu