100+ datasets found
  1. AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

    The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
    Demand for Image/Video remains higher in the Ai Training Data market.
    The Healthcare category held the highest Ai Training Data market revenue share in 2023.
    North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
    

    Market Dynamics of AI Training Data Market

    Key Drivers of AI Training Data Market

    Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
    

    A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

    In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

    (Source: about:blank)

    Advancements in Data Labelling Technologies to Propel Market Growth
    

    The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

    In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

    www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

    Restraint Factors Of AI Training Data Market

    Data Privacy and Security Concerns to Restrict Market Growth
    

    A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

    How did COVID–19 impact the Ai Training Data market?

    The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

  2. Data sources used by companies for training AI models South Korea 2023

    • statista.com
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Data sources used by companies for training AI models South Korea 2023 [Dataset]. https://www.statista.com/statistics/1452822/south-korea-data-sources-for-training-artificial-intelligence-models/
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2023 - Nov 2023
    Area covered
    South Korea
    Description

    As of 2023, customer data was the leading source of information used to train artificial intelligence (AI) models in South Korea, with nearly 70 percent of surveyed companies answering that way. About 62 percent responded to use existing data within the company when training their AI model.

  3. Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata

    • datarade.ai
    .csv
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WIRESTOCK (2023). Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata [Dataset]. https://datarade.ai/data-products/wirestock-s-ai-ml-image-training-data-4-5m-files-with-metadata-wirestock
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Wirestock
    Authors
    WIRESTOCK
    Area covered
    Georgia, Belarus, Swaziland, Pakistan, Chile, Sudan, Jersey, Peru, Estonia, New Caledonia
    Description

    Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata: This data product is a unique offering in the realm of AI/ML training data. What sets it apart is the sheer volume and diversity of the dataset, which includes 4.5 million files spanning across 20 different categories. These categories range from Animals/Wildlife and The Arts to Technology and Transportation, providing a rich and varied dataset for AI/ML applications.

    The data is sourced from Wirestock's platform, where creators upload and sell their photos, videos, and AI art online. This means that the data is not only vast but also constantly updated, ensuring a fresh and relevant dataset for your AI/ML needs. The data is collected in a GDPR-compliant manner, ensuring the privacy and rights of the creators are respected.

    The primary use-cases for this data product are numerous. It is ideal for training machine learning models for image recognition, improving computer vision algorithms, and enhancing AI applications in various industries such as retail, healthcare, and transportation. The diversity of the dataset also means it can be used for more niche applications, such as training AI to recognize specific objects or scenes.

    This data product fits into Wirestock's broader data offering as a key resource for AI/ML training. Wirestock is a platform for creators to sell their work, and this dataset is a collection of that work. It represents the breadth and depth of content available on Wirestock, making it a valuable resource for any company working with AI/ML.

    The core benefits of this dataset are its volume, diversity, and quality. With 4.5 million files, it provides a vast resource for AI training. The diversity of the dataset, spanning 20 categories, ensures a wide range of images for training purposes. The quality of the images is also high, as they are sourced from creators selling their work on Wirestock.

    In terms of how the data is collected, creators upload their work to Wirestock, where it is then sold on various marketplaces. This means the data is sourced directly from creators, ensuring a diverse and unique dataset. The data includes both the images themselves and associated metadata, providing additional context for each image.

    The different image categories included in this dataset are Animals/Wildlife, The Arts, Backgrounds/Textures, Beauty/Fashion, Buildings/Landmarks, Business/Finance, Celebrities, Education, Emotions, Food Drinks, Holidays, Industrial, Interiors, Nature Parks/Outdoor, People, Religion, Science, Signs/Symbols, Sports/Recreation, Technology, Transportation, Vintage, Healthcare/Medical, Objects, and Miscellaneous. This wide range of categories ensures a diverse dataset that can cater to a variety of AI/ML applications.

  4. U

    U.S. AI Training Dataset Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2024). U.S. AI Training Dataset Market Report [Dataset]. https://www.archivemarketresearch.com/reports/us-ai-training-dataset-market-4957
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The U.S. AI Training Dataset Market size was valued at USD 590.4 million in 2023 and is projected to reach USD 1880.70 million by 2032, exhibiting a CAGR of 18.0 % during the forecasts period. The U. S. AI training dataset market deals with the generation, selection, and organization of datasets used in training artificial intelligence. These datasets contain the requisite information that the machine learning algorithms need to infer and learn from. Conducts include the advancement and improvement of AI solutions in different fields of business like transport, medical analysis, computing language, and money related measurements. The applications include training the models for activities such as image classification, predictive modeling, and natural language interface. Other emerging trends are the change in direction of more and better-quality, various and annotated data for the improvement of model efficiency, synthetic data generation for data shortage, and data confidentiality and ethical issues in dataset management. Furthermore, due to arising technologies in artificial intelligence and machine learning, there is a noticeable development in building and using the datasets. Recent developments include: In February 2024, Google struck a deal worth USD 60 million per year with Reddit that will give the former real-time access to the latter’s data and use Google AI to enhance Reddit’s search capabilities. , In February 2024, Microsoft announced around USD 2.1 billion investment in Mistral AI to expedite the growth and deployment of large language models. The U.S. giant is expected to underpin Mistral AI with Azure AI supercomputing infrastructure to provide top-notch scale and performance for AI training and inference workloads. .

  5. A

    Artificial Intelligence Training Dataset Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-training-dataset-38645
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is projected to reach $1605.2 million by 2033, exhibiting a CAGR of 9.4% from 2025 to 2033. The surge in demand for AI training datasets is driven by the increasing adoption of AI and machine learning technologies in various industries such as healthcare, financial services, and manufacturing. Moreover, the growing need for reliable and high-quality data for training AI models is further fueling the market growth. Key market trends include the increasing adoption of cloud-based AI training datasets, the emergence of synthetic data generation, and the growing focus on data privacy and security. The market is segmented by type (image classification dataset, voice recognition dataset, natural language processing dataset, object detection dataset, and others) and application (smart campus, smart medical, autopilot, smart home, and others). North America is the largest regional market, followed by Europe and Asia Pacific. Key companies operating in the market include Appen, Speechocean, TELUS International, Summa Linguae Technologies, and Scale AI. Artificial Intelligence (AI) training datasets are critical for developing and deploying AI models. These datasets provide the data that AI models need to learn, and the quality of the data directly impacts the performance of the model. The AI training dataset market landscape is complex, with many different providers offering datasets for a variety of applications. The market is also rapidly evolving, as new technologies and techniques are developed for collecting, labeling, and managing AI training data.

  6. m

    Trained AI model and associated files

    • figshare.manchester.ac.uk
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Igor Larrosa (2023). Trained AI model and associated files [Dataset]. http://doi.org/10.48420/16965271.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    University of Manchester
    Authors
    Igor Larrosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contains data associated to publication: Organic Reaction Mechanism Classification with Machine Learning

    • Trained AI full model
    • Trained AI reduced models

    • python files to run predictions

    • python files to train model

    • template for inputing kinetics for predictions

    • data used in case studies

    Unpack data file and follow instructions in publication's Supporting Information

  7. i

    15M+ Images | AI Training Data | Annotated imagery data for AI | Object &...

    • data.imagedatasets.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Image Datasets, 15M+ Images | AI Training Data | Annotated imagery data for AI | Object & Scene Detection | Global Coverage [Dataset]. https://data.imagedatasets.ai/products/2m-images-annotated-imagery-data-full-exif-data-object-image-datasets
    Explore at:
    Dataset authored and provided by
    Image Datasets
    Area covered
    Israel, Czechia, Marshall Islands, Brazil, Belize, Gabon, Singapore, Martinique, Gambia, Senegal
    Description

    A comprehensive dataset of 15M+ images sourced globally, featuring full EXIF data, including camera settings and photography details. Enriched with object and scene detection metadata, this dataset is ideal for AI model training in image recognition, classification, and segmentation.

  8. Trojan Detection Software Challenge - image-classification-aug2020-train

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2023). Trojan Detection Software Challenge - image-classification-aug2020-train [Dataset]. https://catalog.data.gov/dataset/trojan-detection-software-challenge-round-2-training-dataset-2ad5b
    Explore at:
    Dataset updated
    Sep 30, 2023
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    Round 2 Training DatasetThe data being generated and disseminated is the training data used to construct trojan detection software solutions. This data, generated at NIST, consists of human level AIs trained to perform image classification. A known percentage of these trained AI models have been poisoned with a known trigger which induces incorrect behavior. This data will be used to develop software solutions for detecting which trained AI models have been poisoned via embedded triggers. This dataset consists of 1104 trained, human level, image classification AI models using a variety of model architectures. The models were trained on synthetically created image data of non-real traffic signs superimposed on road background scenes. Half (50%) of the models have been poisoned with an embedded trigger which causes misclassification of the images when the trigger is present.

  9. Data center chip architecture used for AI training phase 2017-2025

    • statista.com
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data center chip architecture used for AI training phase 2017-2025 [Dataset]. https://www.statista.com/statistics/1104879/data-center-chip-architecture-for-ai-training/
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017
    Area covered
    Worldwide
    Description

    As of November 2019, application-specific integrated circuits (ASIC) are forecast to have a growing share of the training phase artificial intelligence (AI) applications in data centers, making up for a projected 50 percent of it by 2025. Comparatively, graphics processing units (GPUs) will lose their presence by that time, dropping from 97 percent down to 40 percent.

    AI chips

    In order to provide greater security and efficiency, many data centers are overseeing the widespread implementation of artificial intelligence (AI) in their processes and systems. AI technologies and tasks require specialized AI chips that are more powerful and optimized for advanced machine learning (ML) algorithms, owning to an overall growth in data center chip revenues.

    The edge

    An interesting development for the data center industry is the rise of the edge computing. IT infrastructure is moved into edge data centers, specialized facilities that are located nearer to end-users. The global edge data center market size is expected to reach 13.5 billion U.S. dollars in 2024, twice the size of the market in 2020, with experts suggesting that the growth of emerging technologies like 5G and IoT will contribute to this growth.

  10. h

    sample-dcpr-ai-training-data

    • huggingface.co
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanyam Jain (2024). sample-dcpr-ai-training-data [Dataset]. https://huggingface.co/datasets/sanyamjain0315/sample-dcpr-ai-training-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2024
    Authors
    Sanyam Jain
    Description

    sanyamjain0315/sample-dcpr-ai-training-data dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. L

    Large-Scale Model Training Machine Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Large-Scale Model Training Machine Report [Dataset]. https://www.datainsightsmarket.com/reports/large-scale-model-training-machine-41601
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 16, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Large-Scale Model Training Machine market is experiencing explosive growth, fueled by the increasing demand for advanced artificial intelligence (AI) applications across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a robust Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $75 billion by 2033. This surge is driven by several factors, including the proliferation of big data, advancements in deep learning algorithms, and the growing need for efficient model training in applications such as natural language processing (NLP), computer vision, and recommendation systems. Key market segments include the Internet, telecommunications, and government sectors, which are heavily investing in AI infrastructure to enhance their services and operational efficiency. The CPU+GPU segment dominates the market due to its superior performance in handling complex computations required for large-scale model training. Leading companies like Google, Amazon, Microsoft, and NVIDIA are at the forefront of innovation, constantly developing more powerful hardware and software solutions to address the evolving needs of this rapidly expanding market. The market's growth trajectory is shaped by several trends. The increasing adoption of cloud-based solutions for model training is significantly lowering the barrier to entry for smaller companies. Simultaneously, the development of specialized hardware like Tensor Processing Units (TPUs) and Field-Programmable Gate Arrays (FPGAs) is further optimizing performance and reducing costs. Despite this positive outlook, challenges remain. High infrastructure costs, the complexity of managing large datasets, and the shortage of skilled AI professionals are significant restraints on the market's expansion. However, ongoing technological advancements and increased investment in AI research are expected to mitigate these challenges, paving the way for sustained growth in the Large-Scale Model Training Machine market. Regional analysis indicates North America and Asia Pacific (particularly China) as the leading markets, with strong growth anticipated in other regions as AI adoption accelerates globally.

  12. A

    AI Training Dataset Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI Training Dataset Market Report [Dataset]. https://www.archivemarketresearch.com/reports/ai-training-dataset-market-5881
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Nov 22, 2024
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The AI Training Dataset Market size was valued at USD 2124.0 million in 2023 and is projected to reach USD 8593.38 million by 2032, exhibiting a CAGR of 22.1 % during the forecasts period. An AI training dataset is a collection of data used to train machine learning models. It typically includes labeled examples, where each data point has an associated output label or target value. The quality and quantity of this data are crucial for the model's performance. A well-curated dataset ensures the model learns relevant features and patterns, enabling it to generalize effectively to new, unseen data. Training datasets can encompass various data types, including text, images, audio, and structured data. The driving forces behind this growth include:

  13. Machine Learning model data

    • ecmwf.int
    Updated Jan 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2023). Machine Learning model data [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/machine-learning-model-data
    Explore at:
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    three of these models are available:

  14. Size of unstructured training data ML, DS, & AI developers use worldwide by...

    • statista.com
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Size of unstructured training data ML, DS, & AI developers use worldwide by type 2021 [Dataset]. https://www.statista.com/statistics/1241925/worldwide-software-developer-unstructured-training-data-uses-size/
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2020 - Feb 2021
    Area covered
    Worldwide
    Description

    Most machine learning, data science, and artificial intelligence (AI) developers work with unstructured text data of the size between 50 MB and 1 GB, with a combined 51 percent of respondents indicating as such. Twelve percent of respondents work with unstructured video data with a size larger than 1 TB.

  15. d

    FileMarket |AI & ML Training Data from Sotheby's International Realty | Real...

    • datarade.ai
    Updated Aug 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FileMarket (2024). FileMarket |AI & ML Training Data from Sotheby's International Realty | Real Estate Dataset for AI Agents | LLM | ML | DL Training Data [Dataset]. https://datarade.ai/data-products/filemarket-ai-ml-training-data-from-sotheby-s-internationa-filemarket
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    FileMarket
    Area covered
    Mali, Ukraine, Virgin Islands (British), Montenegro, Togo, United Republic of, Sint Maarten (Dutch part), Ethiopia, Palestine, Bolivia (Plurinational State of)
    Description

    The Sotheby's International Realty dataset provides a premium collection of real estate data, ideal for training AI models and enhancing various business operations in the luxury real estate market. Our data is carefully curated and prepared to ensure seamless integration with your AI systems, allowing you to innovate and optimize your business processes with minimal effort. This dataset is versatile and suitable for small boutique agencies, mid-sized firms, and large real estate enterprises.

    Key features include:

    Custom Delivery Options: Data can be delivered through Rest-API, Websockets, tRPC/gRPC, or other preferred methods, ensuring smooth integration with your AI infrastructure. Vectorized Data: Choose from multiple embedding models (LLama, ChatGPT, etc.) and vector databases (Chroma, FAISS, QdrantVectorStore) for optimal AI model performance and vectorized data processing. Comprehensive Data Coverage: Includes detailed property listings, luxury market trends, customer engagement data, and agent performance metrics, providing a robust foundation for AI-driven analytics. Ease of Integration: Our dataset is designed for easy integration with existing AI systems, providing the flexibility to create AI-driven analytics, notifications, and other business applications with minimal hassle. Additional Services: Beyond data provision, we offer AI agent development and integration services, helping you seamlessly incorporate AI into your business workflows. With this dataset, you can enhance property valuation models, optimize customer engagement strategies, and perform advanced market analysis using AI-driven insights. This dataset is perfect for training AI models that require high-quality, structured data, helping luxury real estate businesses stay competitive in a dynamic market.

  16. U.S AI Training Dataset Market Size & Analysis, 2024-2032

    • polarismarketresearch.com
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2024). U.S AI Training Dataset Market Size & Analysis, 2024-2032 [Dataset]. https://www.polarismarketresearch.com/industry-analysis/us-ai-training-dataset-market
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Polaris Market Research & Consulting
    Authors
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    U.S. AI training dataset market size will be valued at USD 2,137.26 Million in 2032 and is projected to grow at a (CAGR) of 17.7%.

  17. AI Training Dataset Market Size Worth $12,993.78 Million By 2032 | CAGR:...

    • polarismarketresearch.com
    Updated Jan 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2025). AI Training Dataset Market Size Worth $12,993.78 Million By 2032 | CAGR: 21.5% [Dataset]. https://www.polarismarketresearch.com/press-releases/ai-training-dataset-market
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Polaris Market Research & Consulting
    Authors
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    Global AI Training Dataset Market size & share value expected to touch USD 12,993.78 million by 2032, to grow at a CAGR of 21.5% during the forecast period.

  18. d

    Model Archive and Data Release: Input data, trained model data, and model...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Model Archive and Data Release: Input data, trained model data, and model outputs for predicting streamflow and base flow for the Mississippi Embayment Regional Study Area using a random forest model [Dataset]. https://catalog.data.gov/dataset/model-archive-and-data-release-input-data-trained-model-data-and-model-outputs-for-predict
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data archive contains datasets developed for the purpose of training and applying random forest models to the Mississippi Embayment Regional Aquifer. The random forest models are designed to predict total stream flow and baseflow as a function of a combination of watershed characteristics and monthly weather data. These datasets are associated with a report (SIR 2022-xxxx) and code contained in a USGS GitLab repository. The GitLab repository (https://code.usgs.gov/map/maprandomforest/) contains much more information about how these data may be used to supply predictions of stream flow and baseflow.

  19. G

    Training dataset and results for geothermal exploration artificial...

    • gdr.openei.org
    • data.openei.org
    • +4more
    archive, data, image
    Updated Sep 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jim Moraga; Mahmut Cavur; H. Sebnem Duzgun; Hilal Soydan; Jim Moraga; Mahmut Cavur; H. Sebnem Duzgun; Hilal Soydan (2020). Training dataset and results for geothermal exploration artificial intelligence, applied to Brady Hot Springs and Desert Peak [Dataset]. http://doi.org/10.15121/1773692
    Explore at:
    data, image, archiveAvailable download formats
    Dataset updated
    Sep 1, 2020
    Dataset provided by
    Geothermal Data Repository
    Colorado School of Mines
    USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Geothermal Technologies Program (EE-4G)
    Authors
    Jim Moraga; Mahmut Cavur; H. Sebnem Duzgun; Hilal Soydan; Jim Moraga; Mahmut Cavur; H. Sebnem Duzgun; Hilal Soydan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The submission includes the labeled datasets, as ESRI Grid files (.gri, .grd) used for training and classification results for our machine leaning model: - brady_som_output.gri, brady_som_output.grd, brady_som_output.* - desert_som_output.gri, desert_som_output.grd, desert_som_output.*
    The data corresponds to two sites: Brady Hot Springs and Desert Peak, both located near Fallon, NV.

    Input layers include: - Geothermal: Labeled data (0: Non-geothermal; 1: Geothermal) - Minerals: Hydrothermal mineral alterations, as a result of spectral analysis using Chalcedony, Kaolinite, Gypsum, Hematite and Epsomite - Temperature: Land surface temperature (% of times a pixel was classified as "Hot" by K-Means) - Faults: Fault density with a 300mradius - Subsidence: PSInSAR results showing subsidence displacement of more than 5mm - Uplift: PSInSAR results showing subsidence displacement of more than 5mm

    Also, the results of the classification using Brady and Desert Peak to build 2 Convolutional Neural Networks. These were applied to the training site as well as the other site, the results are in GeoTiff format. - brady_classification: Results of classification of the Brady-trained model - desert_classification: Results of classification of the Desert Peak-trained model - b2d_classification: Results of classification of Desert Peak using the Brady-trained model - d2b_classification: Results of classification of Brady using the Desert Peak-trained model

  20. AIFS Machine Learning data

    • ecmwf.int
    application/x-grib +1
    Updated Jan 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2023). AIFS Machine Learning data [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/aifs-machine-learning-data
    Explore at:
    application/x-grib(1 datasets), nc(1 datasets)Available download formats
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ECMWF is now running its own Artificial Intelligence Forecasting System (AIFS). The AIFS consists of a deterministic model and an ensemble model. The deterministic model has been running operationally since 25 February 2025; further details can be found on the dedicated Implementation of AIFS Single v1 page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
Organization logo

AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

Explore at:
pdf,excel,csv,pptAvailable download formats
Dataset updated
Jan 15, 2025
Dataset authored and provided by
Cognitive Market Research
License

https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

Time period covered
2021 - 2033
Area covered
Global
Description

According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.

Market Dynamics of AI Training Data Market

Key Drivers of AI Training Data Market

Rising Demand for Industry-Specific Datasets to Provide Viable Market Output

A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

(Source: about:blank)

Advancements in Data Labelling Technologies to Propel Market Growth

The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

Restraint Factors Of AI Training Data Market

Data Privacy and Security Concerns to Restrict Market Growth

A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

How did COVID–19 impact the Ai Training Data market?

The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

Search
Clear search
Close search
Google apps
Main menu