100+ datasets found
  1. Top 10 artificial intelligence use cases by cumulative revenue worldwide...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Top 10 artificial intelligence use cases by cumulative revenue worldwide 2016-2025 [Dataset]. https://www.statista.com/statistics/607835/worldwide-artificial-intelligence-market-leading-use-cases/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    Worldwide
    Description

    The statistic shows the cumulative revenues from the ten leading artificial intelligence (AI) use cases worldwide, between 2016 and 2025. Over the ten years between 2016 and 2025, AI software for vehicular object detection, identification, and avoidance is expected to generate * billion U.S. dollars.

  2. Artificial Intelligence (AI) Data Center Market Size & Share Analysis -...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Artificial Intelligence (AI) Data Center Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/artificial-intelligence-ai-data-center-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Global Artificial Intelligence Data Center Market Report is Segmented by Data Center Type (CSP Data Centers, Colocation Data Centers, Others (Enterprise and Edge)), by Component (Hardware, Software Technology, Services - (Managed Services, Professional Services, Etc. )). ). The Report Offers the Market Size and Forecasts for all the Above Segments in Terms of Value (USD).

  3. Chosen strategies of data security reassurance in the use of AI in companies...

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Chosen strategies of data security reassurance in the use of AI in companies 2023 [Dataset]. https://www.statista.com/statistics/1455744/data-security-reassurance-strategies-ai-use/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Central and South America, North America, Europe, Asia
    Description

    As of 2023, about **** of the surveyed companies claim to take the steps of explaining how the artificial intelligence (AI) works, ensuring a human is involved in the process, and instituting an AI ethics management program to guarantee transparency and data security.

  4. D

    Notable AI Models

    • epoch.ai
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Epoch AI, Notable AI Models [Dataset]. https://epoch.ai/data/notable-ai-models
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Epoch AI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Variables measured
    https://epoch.ai/data/notable-ai-models-documentation#records
    Measurement technique
    https://epoch.ai/data/notable-ai-models-documentation#records
    Description

    Our most comprehensive database of AI models, containing over 800 models that are state of the art, highly cited, or otherwise historically notable. It tracks key factors driving machine learning progress and includes over 300 training compute estimates.

  5. d

    Data from: A Survey of Artificial Intelligence for Prognostics

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). A Survey of Artificial Intelligence for Prognostics [Dataset]. https://catalog.data.gov/dataset/a-survey-of-artificial-intelligence-for-prognostics
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Integrated Systems Health Management includes as key elements fault detection, fault diagnostics, and failure prognostics. Whereas fault detection and diagnostics have been the subject of considerable emphasis in the Artificial Intelligence (AI) community in the past, prognostics has not enjoyed the same attention. The reason for this lack of attention is in part because prognostics as a discipline has only recently been recognized as a game-changing technology that can push the boundary of systems health management. This paper provides a survey of AI techniques applied to prognostics. The paper is an update to our previously published survey of data-driven prognostics.

  6. Share of IT professionals who use AI tools daily worldwide 2023, by...

    • statista.com
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of IT professionals who use AI tools daily worldwide 2023, by profession [Dataset]. https://www.statista.com/statistics/1440332/it-professionals-who-use-ai-tools-daily-worldwide/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 3, 2023 - Jun 22, 2023
    Area covered
    Worldwide
    Description

    In 2023, AI tools were used daily by IT professionals across various fields. In that year, over ** percent of machine learning engineers globally reported using these tools every day, while data scientists followed closely, with around ** percent stating daily usage. Back-end developers and full-stack developers reported slightly lower usage, with **** percent and **** percent respectively stating that they use AI tools daily.

  7. v

    AI Data Management Market Size, Share Forecast Report 2024 – 2030

    • vertexmarketresearch.com
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://www.vertexmarketresearch.com/ (2024). AI Data Management Market Size, Share Forecast Report 2024 – 2030 [Dataset]. https://www.vertexmarketresearch.com/reports/ai-data-management-market
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    https://www.vertexmarketresearch.com/
    License

    https://www.vertexmarketresearch.com/privacy-policyhttps://www.vertexmarketresearch.com/privacy-policy

    Description

    AI data management market size and share projected to reach USD 95 Billion by 2030, growing at a CAGR of 21% from 2024 to 2030. The swift evolution of artificial intelligence (AI), machine learning (ML), and deep learning technologies serves as a crucial catalyst for the growth of the AI data management market.:

  8. f

    Data from: Developing Students’ Statistical Expertise Through Writing in the...

    • tandf.figshare.com
    pdf
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura S. DeLuca; Alex Reinhart; Gordon Weinberg; Michael Laudenbach; Sydney Miller; David West Brown (2025). Developing Students’ Statistical Expertise Through Writing in the Age of AI [Dataset]. http://doi.org/10.6084/m9.figshare.28883205.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Laura S. DeLuca; Alex Reinhart; Gordon Weinberg; Michael Laudenbach; Sydney Miller; David West Brown
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As large language models (LLMs) such as GPT have become more accessible, concerns about their potential effects on students’ learning have grown. In data science education, the specter of students’ turning to LLMs raises multiple issues, as writing is a means not just of conveying information but of developing their statistical reasoning. In our study, we engage with questions surrounding LLMs and their pedagogical impact by: (a) quantitatively and qualitatively describing how select LLMs write report introductions and complete data analysis reports; and (b) comparing patterns in texts authored by LLMs to those authored by students and by published researchers. Our results show distinct differences between machine-generated and human-generated writing, as well as between novice and expert writing. Those differences are evident in how writers manage information, modulate confidence, signal importance, and report statistics. The findings can help inform classroom instruction, whether that instruction is aimed at dissuading the use of LLMs or at guiding their use as a productivity tool. It also has implications for students’ development as statistical thinkers and writers. What happens when they offload the work of data science to a model that doesn’t write quite like a data scientist? Supplementary materials for this article are available online.

  9. A

    Artificial Intelligence Training Dataset Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-training-dataset-38645
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is projected to reach $1605.2 million by 2033, exhibiting a CAGR of 9.4% from 2025 to 2033. The surge in demand for AI training datasets is driven by the increasing adoption of AI and machine learning technologies in various industries such as healthcare, financial services, and manufacturing. Moreover, the growing need for reliable and high-quality data for training AI models is further fueling the market growth. Key market trends include the increasing adoption of cloud-based AI training datasets, the emergence of synthetic data generation, and the growing focus on data privacy and security. The market is segmented by type (image classification dataset, voice recognition dataset, natural language processing dataset, object detection dataset, and others) and application (smart campus, smart medical, autopilot, smart home, and others). North America is the largest regional market, followed by Europe and Asia Pacific. Key companies operating in the market include Appen, Speechocean, TELUS International, Summa Linguae Technologies, and Scale AI. Artificial Intelligence (AI) training datasets are critical for developing and deploying AI models. These datasets provide the data that AI models need to learn, and the quality of the data directly impacts the performance of the model. The AI training dataset market landscape is complex, with many different providers offering datasets for a variety of applications. The market is also rapidly evolving, as new technologies and techniques are developed for collecting, labeling, and managing AI training data.

  10. AI usage among employees in organizations globally in 2023

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). AI usage among employees in organizations globally in 2023 [Dataset]. https://www.statista.com/statistics/1449268/worldwide-ai-use-in-organizations-department/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023
    Area covered
    Worldwide
    Description

    Most organizations have not adapted AI to a great degree, with only a select number of employees within an organization using it in 2023. This is in all likelihood because the technology is still maturing and a select amount of employees might be running pilot programs or test programs for AI usage within companies. What is notable is more than a ******* of companies did not use any AI within their enterprise in 2023.

  11. Advancement of data, analytics, and AI function in the U.S. and Europe 2023

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Advancement of data, analytics, and AI function in the U.S. and Europe 2023 [Dataset]. https://www.statista.com/statistics/1455666/ai-function-analytics-advancement-united-states-europe/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe, United States
    Description

    As of 2023, most surveyed companies in the United States and Europe, or ** percent, claim to be either industry leaders in terms of data, analytics, and artificial intelligence (AI) function advancements or about the same as their industry peers.

  12. AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT,...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2024). AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT, Automotive, Government, Healthcare), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/ai-training-dataset-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    The rapid adoption of AI technologies across various industries, including healthcare, finance, and autonomous vehicles, is driving the demand for high-quality training datasets essential for developing accurate AI models. According to the analyst from Verified Market Research, the AI Training Dataset Market surpassed the market size of USD 1555.58 Million valued in 2024 to reach a valuation of USD 7564.52 Million by 2032.

    The expanding scope of AI applications beyond traditional sectors is fueling growth in the AI Training Dataset Market. This increased demand for Inventory Tags the market to grow at a CAGR of 21.86% from 2026 to 2032.

    AI Training Dataset Market: Definition/ Overview

    An AI training dataset is defined as a comprehensive collection of data that has been meticulously curated and annotated to train artificial intelligence algorithms and machine learning models. These datasets are fundamental for AI systems as they enable the recognition of patterns.

  13. Global AI Data Management Market Research Report: Forecast (2024-2030)

    • marknteladvisors.com
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MarkNtel Advisors (2024). Global AI Data Management Market Research Report: Forecast (2024-2030) [Dataset]. https://www.marknteladvisors.com/research-library/ai-data-management-market.html
    Explore at:
    Dataset updated
    May 1, 2024
    Dataset authored and provided by
    MarkNtel Advisors
    License

    https://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy

    Area covered
    Global
    Description

    The Global AI Data Management Market size was valued at around USD 23.8 billion in 2023 & is estimated to grow at a CAGR of around 24% during the forecast period 2024-30.

  14. Applications related to artificial intelligence technologies, by industry...

    • www150.statcan.gc.ca
    • canwin-datahub.ad.umanitoba.ca
    • +2more
    Updated Jul 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Applications related to artificial intelligence technologies, by industry and enterprise size [Dataset]. http://doi.org/10.25318/2710037501-eng
    Explore at:
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Survey of advanced technology, applications related to artificial intelligence technologies, by North American Industry Classification System (NAICS) and enterprise size for Canada and certain provinces, in 2022.

  15. A

    Artificial Intelligence Synthetic Data Service Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Artificial Intelligence Synthetic Data Service Report [Dataset]. https://www.datainsightsmarket.com/reports/artificial-intelligence-synthetic-data-service-525726
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Artificial Intelligence (AI) Synthetic Data Service market is experiencing rapid growth, driven by the increasing need for high-quality data to train and validate AI models, especially in sectors with data scarcity or privacy concerns. The market, estimated at $2 billion in 2025, is projected to expand significantly over the next decade, achieving a Compound Annual Growth Rate (CAGR) of approximately 30% from 2025 to 2033. This robust growth is fueled by several key factors: the escalating adoption of AI across various industries, the rising demand for robust and unbiased AI models, and the growing awareness of data privacy regulations like GDPR, which restrict the use of real-world data. Furthermore, advancements in synthetic data generation techniques, enabling the creation of more realistic and diverse datasets, are accelerating market expansion. Major players like Synthesis, Datagen, Rendered, Parallel Domain, Anyverse, and Cognata are actively shaping the market landscape through innovative solutions and strategic partnerships. The market is segmented by data type (image, text, time-series, etc.), application (autonomous driving, healthcare, finance, etc.), and deployment model (cloud, on-premise). Despite the significant growth potential, certain restraints exist. The high cost of developing and deploying synthetic data generation solutions can be a barrier to entry for smaller companies. Additionally, ensuring the quality and realism of synthetic data remains a crucial challenge, requiring continuous improvement in algorithms and validation techniques. Overcoming these limitations and fostering wider adoption will be key to unlocking the full potential of the AI Synthetic Data Service market. The historical period (2019-2024) likely saw a lower CAGR due to initial market development and technology maturation, before experiencing the accelerated growth projected for the forecast period (2025-2033). Future growth will heavily depend on further technological advancements, decreasing costs, and increasing industry awareness of the benefits of synthetic data.

  16. t

    Artificial Intelligence (AI) Software Global Market Report 2025

    • thebusinessresearchcompany.com
    pdf,excel,csv,ppt
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Business Research Company (2025). Artificial Intelligence (AI) Software Global Market Report 2025 [Dataset]. https://www.thebusinessresearchcompany.com/report/artificial-intelligence-ai-software-global-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    The Business Research Company
    License

    https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy

    Description

    Global Artificial Intelligence (AI) Software market size is expected to reach $896.32 billion by 2029 at 32.1%, segmented as by on-premises, enterprise ai solutions, edge ai solutions, ai for data centers

  17. d

    FileMarket | 20,000 photos | AI Training Data | Large Language Model (LLM)...

    • datarade.ai
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FileMarket (2024). FileMarket | 20,000 photos | AI Training Data | Large Language Model (LLM) Data | Machine Learning (ML) Data | Deep Learning (DL) Data | [Dataset]. https://datarade.ai/data-products/filemarket-ai-training-data-large-language-model-llm-data-filemarket
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    FileMarket
    Area covered
    Central African Republic, Saudi Arabia, China, Benin, Antigua and Barbuda, Saint Kitts and Nevis, French Southern Territories, Brazil, Colombia, Papua New Guinea
    Description

    FileMarket provides premium Large Language Model (LLM) Data designed to support and enhance a wide range of AI applications. Our globally sourced LLM Data sets are meticulously curated to ensure high quality, diversity, and accuracy, making them ideal for training robust and reliable language models. In addition to LLM Data, we also offer comprehensive datasets across Object Detection Data, Machine Learning (ML) Data, Deep Learning (DL) Data, and Biometric Data. Each dataset is carefully crafted to meet the specific needs of cutting-edge AI and machine learning projects.

    Key use cases of our Large Language Model (LLM) Data:

    Text generation Chatbots and virtual assistants Machine translation Sentiment analysis Speech recognition Content summarization Why choose FileMarket's data:

    Object Detection Data: Essential for training AI in image and video analysis. Machine Learning (ML) Data: Ideal for a broad spectrum of applications, from predictive analysis to NLP. Deep Learning (DL) Data: Designed to support complex neural networks and deep learning models. Biometric Data: Specialized for facial recognition, fingerprint analysis, and other biometric applications. FileMarket's premier sources for top-tier Large Language Model (LLM) Data and other specialized datasets ensure your AI projects drive innovation and achieve success across various applications.

  18. d

    The National Artificial Intelligence Research and Development Strategic...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCO NITRD (2025). The National Artificial Intelligence Research and Development Strategic Plan: 2019 Update [Dataset]. https://catalog.data.gov/dataset/the-national-artificial-intelligence-research-and-development-strategic-plan-2019-update
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset provided by
    NCO NITRD
    Description

    Artificial intelligence (AI) holds tremendous promise to benefit nearly all aspects of society, including the economy, healthcare, security, the law, transportation, even technology itself. On February 11, 2019, the President signed Executive Order 13859, Maintaining American Leadership in Artificial Intelligence. This order launched the American AI Initiative, a concerted effort to promote and protect AI technology and innovation in the United States. The Initiative implements a whole-of-government strategy in collaboration and engagement with the private sector, academia, the public, and like-minded international partners. Among other actions, key directives in the Initiative call for Federal agencies to prioritize AI research and development (R&emp;D) investments, enhance access to high-quality cyberinfrastructure and data, ensure that the Nation leads in the development of technical standards for AI, and provide education and training opportunities to prepare the American workforce for the new era of AI. In support of the American AI Initiative, this National AI R&emp;D Strategic Plan: 2019 Update defines the priority areas for Federal investments in AI R&emp;D. This 2019 update builds upon the first National AI R&emp;D Strategic Plan released in 2016, accounting for new research, technical innovations, and other considerations that have emerged over the past three years. This update has been developed by leading AI researchers and research administrators from across the Federal Government, with input from the broader civil society, including from many of America’s leading academic research institutions, nonprofit organizations, and private sector technology companies. Feedback from these key stakeholders affirmed the continued relevance of each part of the 2016 Strategic Plan while also calling for greater attention to making AI trustworthy, to partnering with the private sector, and other imperatives.

  19. d

    Data for Artificial Intelligence: Data-Centric AI for Transportation: Work...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2025). Data for Artificial Intelligence: Data-Centric AI for Transportation: Work Zone Use Case Raw Maryland Incidents Matched [Dataset]. https://catalog.data.gov/dataset/data-for-artificial-intelligence-data-centric-ai-for-transportation-work-zone-use-case-raw-1c160
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset provided by
    Federal Highway Administration
    Description

    Data for Artificial Intelligence: Data-Centric AI for Transportation: Work Zone Use Case proposes a data integration pipeline that enhances the utilization of work zone and traffic data from diversified platforms and introduces a novel deep learning model to predict the traffic speed and traffic collision likelihood during planned work zone events. This dataset is raw Maryland roadway incident data without rows where road_tmc and road are inconsistent.

  20. AI-Driven Journeys: The Adoption of Artificial Intelligence (AI) Chatbots in...

    • figshare.com
    csv
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jerónimo Paiva (2025). AI-Driven Journeys: The Adoption of Artificial Intelligence (AI) Chatbots in Tourism and Hospitality by Gen Z (Dataset) [Dataset]. http://doi.org/10.6084/m9.figshare.28184666.v1
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jerónimo Paiva
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset consists of responses collected via an online questionnaire targeting Generation Z individuals in Portugal. It focuses on understanding the adoption of AI-driven chatbots in the tourism and hospitality industries. The data includes demographic information, behavioral variables, and responses to constructs from the AI Device Use Acceptance (AIDUA) model, such as emotional reaction, performance expectancy, anthropomorphism, and social influence.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Top 10 artificial intelligence use cases by cumulative revenue worldwide 2016-2025 [Dataset]. https://www.statista.com/statistics/607835/worldwide-artificial-intelligence-market-leading-use-cases/
Organization logo

Top 10 artificial intelligence use cases by cumulative revenue worldwide 2016-2025

Explore at:
Dataset updated
Jun 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2016
Area covered
Worldwide
Description

The statistic shows the cumulative revenues from the ten leading artificial intelligence (AI) use cases worldwide, between 2016 and 2025. Over the ten years between 2016 and 2025, AI software for vehicular object detection, identification, and avoidance is expected to generate * billion U.S. dollars.

Search
Clear search
Close search
Google apps
Main menu