100+ datasets found
  1. 150+ Famous AI Tools

    • kaggle.com
    zip
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    shubham Kumar (2024). 150+ Famous AI Tools [Dataset]. https://www.kaggle.com/datasets/shubhamoujlayan/150-famous-ai-tools
    Explore at:
    zip(3110 bytes)Available download formats
    Dataset updated
    Aug 13, 2024
    Authors
    shubham Kumar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides an overview of various AI tools, capturing key attributes that highlight their popularity, subscription models, and the categories they fall under. It can serve as a valuable resource for analyzing trends in AI tool usage, comparing different tools based on user feedback, and understanding the market positioning of these tools.

    Columns: Name: The name of the AI tool, representing various applications and services in the AI domain. Votes: The number of votes or ratings each tool has received, reflecting its popularity and user acceptance. Subscription: The type of subscription model the tool offers, indicating whether it is free, freemium (a mix of free and paid features), or paid. Category: A list of categories associated with each tool, identifying the primary industries or use cases it caters to, such as: Human Resources Legal AI Chatbots Marketing Education Video Generators Writing Generators Storytellers Presentations Startup Tools Dataset Use Cases: Market Analysis: Understand which AI tools are most popular based on user votes and explore trends across different categories. Product Comparison: Compare AI tools based on their subscription models, identifying which tools offer free or freemium options versus paid-only models. Category Insights: Analyze the distribution of AI tools across various categories to see where innovation and adoption are most concentrated.

  2. H

    AI TOOLS - Open Dataset - 4000 tools / 50 categories

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Sep 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivier BUREAU (2023). AI TOOLS - Open Dataset - 4000 tools / 50 categories [Dataset]. http://doi.org/10.7910/DVN/QLSXZG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Olivier BUREAU
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Introducing a comprehensive and openly accessible dataset designed for researchers and data scientists in the field of artificial intelligence. This dataset encompasses a collection of over 4,000 AI tools, meticulously categorized into more than 50 distinct categories. This valuable resource has been generously shared by its owner, TasticAI, and is freely available for various purposes such as research, benchmarking, market surveys, and more. Dataset Overview: The dataset provides an extensive repository of AI tools, each accompanied by a wealth of information to facilitate your research endeavors. Here is a brief overview of the key components: AI Tool Name: Each AI tool is listed with its name, providing an easy reference point for users to identify specific tools within the dataset. Description: A concise one-line description is provided for each AI tool. This description offers a quick glimpse into the tool's purpose and functionality. AI Tool Category: The dataset is thoughtfully organized into more than 50 distinct categories, ensuring that you can easily locate AI tools that align with your research interests or project needs. Whether you are working on natural language processing, computer vision, machine learning, or other AI subfields, you will find a dedicated category. Images: Visual representation is crucial for understanding and identifying AI tools. To aid your exploration, the dataset includes images associated with each tool, allowing for quick recognition and visual association. Website Links: Accessing more detailed information about a specific AI tool is effortless, as direct links to the tool's respective website or documentation are provided. This feature enables researchers and data scientists to delve deeper into the tools that pique their interest. Utilization and Benefits: This openly shared dataset serves as a valuable resource for various purposes: Research: Researchers can use this dataset to identify AI tools relevant to their studies, facilitating faster literature reviews, comparative analyses, and the exploration of cutting-edge technologies. Benchmarking: The extensive collection of AI tools allows for comprehensive benchmarking, enabling you to evaluate and compare tools within specific categories or across categories. Market Surveys: Data scientists and market analysts can utilize this dataset to gain insights into the AI tool landscape, helping them identify emerging trends and opportunities within the AI market. Educational Purposes: Educators and students can leverage this dataset for teaching and learning about AI tools, their applications, and the categorization of AI technologies. Conclusion: In summary, this openly shared dataset from TasticAI, featuring over 4,000 AI tools categorized into more than 50 categories, represents a valuable asset for researchers, data scientists, and anyone interested in the field of artificial intelligence. Its easy accessibility, detailed information, and versatile applications make it an indispensable resource for advancing AI research, benchmarking, market analysis, and more. Explore the dataset at https://tasticai.com and unlock the potential of this rich collection of AI tools for your projects and studies.

  3. AI Training Dataset Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). AI Training Dataset Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/ai-training-dataset-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, United Kingdom, United States
    Description

    Snapshot img

    AI Training Dataset Market Size 2025-2029

    The ai training dataset market size is valued to increase by USD 7.33 billion, at a CAGR of 29% from 2024 to 2029. Proliferation and increasing complexity of foundational AI models will drive the ai training dataset market.

    Market Insights

    North America dominated the market and accounted for a 36% growth during the 2025-2029.
    By Service Type - Text segment was valued at USD 742.60 billion in 2023
    By Deployment - On-premises segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 479.81 million 
    Market Future Opportunities 2024: USD 7334.90 million
    CAGR from 2024 to 2029 : 29%
    

    Market Summary

    The market is experiencing significant growth as businesses increasingly rely on artificial intelligence (AI) to optimize operations, enhance customer experiences, and drive innovation. The proliferation and increasing complexity of foundational AI models necessitate large, high-quality datasets for effective training and improvement. This shift from data quantity to data quality and curation is a key trend in the market. Navigating data privacy, security, and copyright complexities, however, poses a significant challenge. Businesses must ensure that their datasets are ethically sourced, anonymized, and securely stored to mitigate risks and maintain compliance. For instance, in the supply chain optimization sector, companies use AI models to predict demand, optimize inventory levels, and improve logistics. Access to accurate and up-to-date training datasets is essential for these applications to function efficiently and effectively. Despite these challenges, the benefits of AI and the need for high-quality training datasets continue to drive market growth. The potential applications of AI are vast and varied, from healthcare and finance to manufacturing and transportation. As businesses continue to explore the possibilities of AI, the demand for curated, reliable, and secure training datasets will only increase.

    What will be the size of the AI Training Dataset Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleThe market continues to evolve, with businesses increasingly recognizing the importance of high-quality datasets for developing and refining artificial intelligence models. According to recent studies, the use of AI in various industries is projected to grow by over 40% in the next five years, creating a significant demand for training datasets. This trend is particularly relevant for boardrooms, as companies grapple with compliance requirements, budgeting decisions, and product strategy. Moreover, the importance of data labeling, feature selection, and imbalanced data handling in model performance cannot be overstated. For instance, a mislabeled dataset can lead to biased and inaccurate models, potentially resulting in costly errors. Similarly, effective feature selection algorithms can significantly improve model accuracy and reduce computational resources. Despite these challenges, advances in model compression methods, dataset scalability, and data lineage tracking are helping to address some of the most pressing issues in the market. For example, model compression techniques can reduce the size of models, making them more efficient and easier to deploy. Similarly, data lineage tracking can help ensure data consistency and improve model interpretability. In conclusion, the market is a critical component of the broader AI ecosystem, with significant implications for businesses across industries. By focusing on data quality, effective labeling, and advanced techniques for handling imbalanced data and improving model performance, organizations can stay ahead of the curve and unlock the full potential of AI.

    Unpacking the AI Training Dataset Market Landscape

    In the realm of artificial intelligence (AI), the significance of high-quality training datasets is indisputable. Businesses harnessing AI technologies invest substantially in acquiring and managing these datasets to ensure model robustness and accuracy. According to recent studies, up to 80% of machine learning projects fail due to insufficient or poor-quality data. Conversely, organizations that effectively manage their training data experience an average ROI improvement of 15% through cost reduction and enhanced model performance.

    Distributed computing systems and high-performance computing facilitate the processing of vast datasets, enabling businesses to train models at scale. Data security protocols and privacy preservation techniques are crucial to protect sensitive information within these datasets. Reinforcement learning models and supervised learning models each have their unique applications, with the former demonstrating a 30% faster convergence rate in certain use cases.

    Data annot

  4. Top AI Tools Dataset

    • kaggle.com
    zip
    Updated Sep 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleesha Nadeem (2025). Top AI Tools Dataset [Dataset]. https://www.kaggle.com/datasets/nalisha/top-ai-tools-dataset
    Explore at:
    zip(1261 bytes)Available download formats
    Dataset updated
    Sep 5, 2025
    Authors
    Aleesha Nadeem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset contains a curated collection of AI tools that are widely used across different domains such as text generation, image processing, video editing, coding assistance, research, and education.

    The goal of this dataset is to provide researchers, developers, and learners with a comprehensive reference of AI tools, their categories, features, and use cases. By organizing tools into categories, this dataset makes it easier to analyze, compare, and explore the fast-growing AI ecosystem.

    Dataset Highlights

    Categories of AI Tools (Text, Image, Video, Coding, Productivity, Research, etc.)

    Tool Names and Descriptions

    Key Features

    Use Cases / Applications

    Website / Platform (if available)

    Possible Use Cases

    Data Analysis:

    Studying trends in AI tool adoption.

    Education:

    Learning about available AI technologies.

    Development:

    Identifying:

    the right tools for projects.

    Research:

    Exploring the evolution of AI tools across industries.

  5. Generative AI In Data Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Generative AI In Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/generative-ai-in-data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Generative AI In Data Analytics Market Size 2025-2029

    The generative ai in data analytics market size is valued to increase by USD 4.62 billion, at a CAGR of 35.5% from 2024 to 2029. Democratization of data analytics and increased accessibility will drive the generative ai in data analytics market.

    Market Insights

    North America dominated the market and accounted for a 37% growth during the 2025-2029.
    By Deployment - Cloud-based segment was valued at USD 510.60 billion in 2023
    By Technology - Machine learning segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 621.84 million 
    Market Future Opportunities 2024: USD 4624.00 million
    CAGR from 2024 to 2029 : 35.5%
    

    Market Summary

    The market is experiencing significant growth as businesses worldwide seek to unlock new insights from their data through advanced technologies. This trend is driven by the democratization of data analytics and increased accessibility of AI models, which are now available in domain-specific and enterprise-tuned versions. Generative AI, a subset of artificial intelligence, uses deep learning algorithms to create new data based on existing data sets. This capability is particularly valuable in data analytics, where it can be used to generate predictions, recommendations, and even new data points. One real-world business scenario where generative AI is making a significant impact is in supply chain optimization. In this context, generative AI models can analyze historical data and generate forecasts for demand, inventory levels, and production schedules. This enables businesses to optimize their supply chain operations, reduce costs, and improve customer satisfaction. However, the adoption of generative AI in data analytics also presents challenges, particularly around data privacy, security, and governance. As businesses continue to generate and analyze increasingly large volumes of data, ensuring that it is protected and used in compliance with regulations is paramount. Despite these challenges, the benefits of generative AI in data analytics are clear, and its use is set to grow as businesses seek to gain a competitive edge through data-driven insights.

    What will be the size of the Generative AI In Data Analytics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleGenerative AI, a subset of artificial intelligence, is revolutionizing data analytics by automating data processing and analysis, enabling businesses to derive valuable insights faster and more accurately. Synthetic data generation, a key application of generative AI, allows for the creation of large, realistic datasets, addressing the challenge of insufficient data in analytics. Parallel processing methods and high-performance computing power the rapid analysis of vast datasets. Automated machine learning and hyperparameter optimization streamline model development, while model monitoring systems ensure continuous model performance. Real-time data processing and scalable data solutions facilitate data-driven decision-making, enabling businesses to respond swiftly to market trends. One significant trend in the market is the integration of AI-powered insights into business operations. For instance, probabilistic graphical models and backpropagation techniques are used to predict customer churn and optimize marketing strategies. Ensemble learning methods and transfer learning techniques enhance predictive analytics, leading to improved customer segmentation and targeted marketing. According to recent studies, businesses have achieved a 30% reduction in processing time and a 25% increase in predictive accuracy by implementing generative AI in their data analytics processes. This translates to substantial cost savings and improved operational efficiency. By embracing this technology, businesses can gain a competitive edge, making informed decisions with greater accuracy and agility.

    Unpacking the Generative AI In Data Analytics Market Landscape

    In the dynamic realm of data analytics, Generative AI algorithms have emerged as a game-changer, revolutionizing data processing and insights generation. Compared to traditional data mining techniques, Generative AI models can create new data points that mirror the original dataset, enabling more comprehensive data exploration and analysis (Source: Gartner). This innovation leads to a 30% increase in identified patterns and trends, resulting in improved ROI and enhanced business decision-making (IDC).

    Data security protocols are paramount in this context, with Classification Algorithms and Clustering Algorithms ensuring data privacy and compliance alignment. Machine Learning Pipelines and Deep Learning Frameworks facilitate seamless integration with Predictive Modeling Tools and Automated Report Generation on Cloud

  6. A

    Artificial Intelligence Training Dataset Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-training-dataset-38645
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is projected to reach $1605.2 million by 2033, exhibiting a CAGR of 9.4% from 2025 to 2033. The surge in demand for AI training datasets is driven by the increasing adoption of AI and machine learning technologies in various industries such as healthcare, financial services, and manufacturing. Moreover, the growing need for reliable and high-quality data for training AI models is further fueling the market growth. Key market trends include the increasing adoption of cloud-based AI training datasets, the emergence of synthetic data generation, and the growing focus on data privacy and security. The market is segmented by type (image classification dataset, voice recognition dataset, natural language processing dataset, object detection dataset, and others) and application (smart campus, smart medical, autopilot, smart home, and others). North America is the largest regional market, followed by Europe and Asia Pacific. Key companies operating in the market include Appen, Speechocean, TELUS International, Summa Linguae Technologies, and Scale AI. Artificial Intelligence (AI) training datasets are critical for developing and deploying AI models. These datasets provide the data that AI models need to learn, and the quality of the data directly impacts the performance of the model. The AI training dataset market landscape is complex, with many different providers offering datasets for a variety of applications. The market is also rapidly evolving, as new technologies and techniques are developed for collecting, labeling, and managing AI training data.

  7. Data from: Multi-Source Distributed System Data for AI-powered Analytics

    • zenodo.org
    zip
    Updated Nov 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao; Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao (2022). Multi-Source Distributed System Data for AI-powered Analytics [Dataset]. http://doi.org/10.5281/zenodo.3549604
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 10, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao; Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract:

    In recent years there has been an increased interest in Artificial Intelligence for IT Operations (AIOps). This field utilizes monitoring data from IT systems, big data platforms, and machine learning to automate various operations and maintenance (O&M) tasks for distributed systems.
    The major contributions have been materialized in the form of novel algorithms.
    Typically, researchers took the challenge of exploring one specific type of observability data sources, such as application logs, metrics, and distributed traces, to create new algorithms.
    Nonetheless, due to the low signal-to-noise ratio of monitoring data, there is a consensus that only the analysis of multi-source monitoring data will enable the development of useful algorithms that have better performance.
    Unfortunately, existing datasets usually contain only a single source of data, often logs or metrics. This limits the possibilities for greater advances in AIOps research.
    Thus, we generated high-quality multi-source data composed of distributed traces, application logs, and metrics from a complex distributed system. This paper provides detailed descriptions of the experiment, statistics of the data, and identifies how such data can be analyzed to support O&M tasks such as anomaly detection, root cause analysis, and remediation.

    General Information:

    This repository contains the simple scripts for data statistics, and link to the multi-source distributed system dataset.

    You may find details of this dataset from the original paper:

    Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, Odej Kao, "Multi-Source Distributed System Data for AI-powered Analytics".

    If you use the data, implementation, or any details of the paper, please cite!

    BIBTEX:

    _

    @inproceedings{nedelkoski2020multi,
     title={Multi-source Distributed System Data for AI-Powered Analytics},
     author={Nedelkoski, Sasho and Bogatinovski, Jasmin and Mandapati, Ajay Kumar and Becker, Soeren and Cardoso, Jorge and Kao, Odej},
     booktitle={European Conference on Service-Oriented and Cloud Computing},
     pages={161--176},
     year={2020},
     organization={Springer}
    }
    

    _

    The multi-source/multimodal dataset is composed of distributed traces, application logs, and metrics produced from running a complex distributed system (Openstack). In addition, we also provide the workload and fault scripts together with the Rally report which can serve as ground truth. We provide two datasets, which differ on how the workload is executed. The sequential_data is generated via executing workload of sequential user requests. The concurrent_data is generated via executing workload of concurrent user requests.

    The raw logs in both datasets contain the same files. If the user wants the logs filetered by time with respect to the two datasets, should refer to the timestamps at the metrics (they provide the time window). In addition, we suggest to use the provided aggregated time ranged logs for both datasets in CSV format.

    Important: The logs and the metrics are synchronized with respect time and they are both recorded on CEST (central european standard time). The traces are on UTC (Coordinated Universal Time -2 hours). They should be synchronized if the user develops multimodal methods. Please read the IMPORTANT_experiment_start_end.txt file before working with the data.

    Our GitHub repository with the code for the workloads and scripts for basic analysis can be found at: https://github.com/SashoNedelkoski/multi-source-observability-dataset/

  8. HelpSteer: AI Alignment Dataset

    • kaggle.com
    zip
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). HelpSteer: AI Alignment Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/helpsteer-ai-alignment-dataset
    Explore at:
    zip(16614333 bytes)Available download formats
    Dataset updated
    Nov 22, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    HelpSteer: AI Alignment Dataset

    Real-World Helpfulness Annotated for AI Alignment

    By Huggingface Hub [source]

    About this dataset

    HelpSteer is an Open-Source dataset designed to empower AI Alignment through the support of fair, team-oriented annotation. The dataset provides 37,120 samples each containing a prompt and response along with five human-annotated attributes ranging between 0 and 4; with higher results indicating better quality. Using cutting-edge methods in machine learning and natural language processing in combination with the annotation of data experts, HelpSteer strives to create a set of standardized values that can be used to measure alignment between human and machine interactions. With comprehensive datasets providing responses rated for correctness, coherence, complexity, helpfulness and verbosity, HelpSteer sets out to assist organizations in fostering reliable AI models which ensure more accurate results thereby leading towards improved user experience at all levels

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to Use HelpSteer: An Open-Source AI Alignment Dataset

    HelpSteer is an open-source dataset designed to help researchers create models with AI Alignment. The dataset consists of 37,120 different samples each containing a prompt, a response and five human-annotated attributes used to measure these responses. This guide will give you a step-by-step introduction on how to leverage HelpSteer for your own projects.

    Step 1 - Choosing the Data File

    Helpsteer contains two data files – one for training and one for validation. To start exploring the dataset, first select the file you would like to use by downloading both train.csv and validation.csv from the Kaggle page linked above or getting them from the Google Drive repository attached here: [link]. All the samples in each file consist of 7 columns with information about a single response: prompt (given), response (submitted), helpfulness, correctness, coherence, complexity and verbosity; all sporting values between 0 and 4 where higher means better in respective category.

    ## Step 2—Exploratory Data Analysis (EDA) Once you have your file loaded into your workspace or favorite software environment (e.g suggested libraries like Pandas/Numpy or even Microsoft Excel), it’s time explore it further by running some basic EDA commands that summarize each feature's distribution within our data set as well as note potential trends or points of interests throughout it - e.g what are some traits that are polarizing these responses more? Are there any outliers that might signal something interesting happening? Plotting these results often provides great insights into pattern recognition across datasets which can be used later on during modeling phase also known as “Feature Engineering”

    ## Step 3—Data Preprocessing After your interpretation of raw data while doing EDA should form some hypotheses around what features matter most when trying to estimate attribute scores of unknown responses accurately so proceeding with preprocessing such as cleaning up missing entries or handling outliers accordingly becomes highly recommended before starting any modelling efforts with this data set - kindly refer also back at Kaggle page description section if unsure about specific attributes domain ranges allowed values explicitly for extra confidence during this step because having correct numerical suggestions ready can make modelling workload lighter later on while building predictive models . It’s important not rushing over this stage otherwise poor results may occur later when aiming high accuracy too quickly upon model deployment due low quality

    Research Ideas

    • Designating and measuring conversational AI engagement goals: Researchers can utilize the HelpSteer dataset to design evaluation metrics for AI engagement systems.
    • Identifying conversational trends: By analyzing the annotations and data in HelpSteer, organizations can gain insights into what makes conversations more helpful, cohesive, complex or consistent across datasets or audiences.
    • Training Virtual Assistants: Train artificial intelligence algorithms on this dataset to develop virtual assistants that respond effectively to customer queries with helpful answers

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    **License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/pu...

  9. AI/ML Youtube Videos

    • kaggle.com
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asmaa Hadir (2023). AI/ML Youtube Videos [Dataset]. https://www.kaggle.com/datasets/asmaahadir/aiml-youtube-channels-content-2018-2019
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Asmaa Hadir
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    YouTube
    Description

    I created this dataset as part of a data analysis project and concluded that it might be relevant for others who are interested in examining in analyzing content on YouTube. This dataset is a collection of over 6000 videos having the columns:

    • Channel: video's channel
    • Title: video title
    • PublishedDate: date the video was uploaded
    • Likes: likes count for the video
    • Views: views count for the video
    • Comments: comments count for the video

      Through the YouTube API and using Python, I collect data about some of these popular channels' videos that provide educational content about Machine Learning and Data Science in order to extract insights about which topics had been popular within the last couple of years. Featured in the dataset are the following creators:

    • Krish Naik

    • Nicholas Renotte

    • Sentdex

    • DeepLearningAI

    • Artificial Intelligence — All in One

    • Siraj Raval

    • Jeremy Howard

    • Applied AI Course

    • Daniel Bourke

    • Jeff Heaton

    • DeepLearning.TV

    • Arxiv Insights

    These channels are features in multiple top AI channels to subscribe to lists and have seen a big growth in the last couple of years on YouTube. They all have a creation date since or before 2018.

  10. d

    Dataplex: Reddit Data | Global Social Media Data | 2.1M+ subreddits: trends,...

    • datarade.ai
    .json, .csv
    Updated Aug 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: Reddit Data | Global Social Media Data | 2.1M+ subreddits: trends, audience insights + more | Ideal for Interest-Based Segmentation [Dataset]. https://datarade.ai/data-products/dataplex-reddit-data-global-social-media-data-1-1m-mill-dataplex
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    Chile, Jersey, Gambia, Martinique, CĂ´te d'Ivoire, Holy See, Christmas Island, Macao, Mexico, Botswana
    Description

    The Reddit Subreddit Dataset by Dataplex offers a comprehensive and detailed view of Reddit’s vast ecosystem, now enhanced with appended AI-generated columns that provide additional insights and categorization. This dataset includes data from over 2.1 million subreddits, making it an invaluable resource for a wide range of analytical applications, from social media analysis to market research.

    Dataset Overview:

    This dataset includes detailed information on subreddit activities, user interactions, post frequency, comment data, and more. The inclusion of AI-generated columns adds an extra layer of analysis, offering sentiment analysis, topic categorization, and predictive insights that help users better understand the dynamics of each subreddit.

    2.1 Million Subreddits with Enhanced AI Insights: The dataset covers over 2.1 million subreddits and now includes AI-enhanced columns that provide: - Sentiment Analysis: AI-driven sentiment scores for posts and comments, allowing users to gauge community mood and reactions. - Topic Categorization: Automated categorization of subreddit content into relevant topics, making it easier to filter and analyze specific types of discussions. - Predictive Insights: AI models that predict trends, content virality, and user engagement, helping users anticipate future developments within subreddits.

    Sourced Directly from Reddit:

    All social media data in this dataset is sourced directly from Reddit, ensuring accuracy and authenticity. The dataset is updated regularly, reflecting the latest trends and user interactions on the platform. This ensures that users have access to the most current and relevant data for their analyses.

    Key Features:

    • Subreddit Metrics: Detailed data on subreddit activity, including the number of posts, comments, votes, and user participation.
    • User Engagement: Insights into how users interact with content, including comment threads, upvotes/downvotes, and participation rates.
    • Trending Topics: Track emerging trends and viral content across the platform, helping you stay ahead of the curve in understanding social media dynamics.
    • AI-Enhanced Analysis: Utilize AI-generated columns for sentiment analysis, topic categorization, and predictive insights, providing a deeper understanding of the data.

    Use Cases:

    • Social Media Analysis: Researchers and analysts can use this dataset to study online behavior, track the spread of information, and understand how content resonates with different audiences.
    • Market Research: Marketers can leverage the dataset to identify target audiences, understand consumer preferences, and tailor campaigns to specific communities.
    • Content Strategy: Content creators and strategists can use insights from the dataset to craft content that aligns with trending topics and user interests, maximizing engagement.
    • Academic Research: Academics can explore the dynamics of online communities, studying everything from the spread of misinformation to the formation of online subcultures.

    Data Quality and Reliability:

    The Reddit Subreddit Dataset emphasizes data quality and reliability. Each record is carefully compiled from Reddit’s vast database, ensuring that the information is both accurate and up-to-date. The AI-generated columns further enhance the dataset's value, providing automated insights that help users quickly identify key trends and sentiments.

    Integration and Usability:

    The dataset is provided in a format that is compatible with most data analysis tools and platforms, making it easy to integrate into existing workflows. Users can quickly import, analyze, and utilize the data for various applications, from market research to academic studies.

    User-Friendly Structure and Metadata:

    The data is organized for easy navigation and analysis, with metadata files included to help users identify relevant subreddits and data points. The AI-enhanced columns are clearly labeled and structured, allowing users to efficiently incorporate these insights into their analyses.

    Ideal For:

    • Data Analysts: Conduct in-depth analyses of subreddit trends, user engagement, and content virality. The dataset’s extensive coverage and AI-enhanced insights make it an invaluable tool for data-driven research.
    • Marketers: Use the dataset to better understand your target audience, tailor campaigns to specific interests, and track the effectiveness of marketing efforts across Reddit.
    • Researchers: Explore the social dynamics of online communities, analyze the spread of ideas and information, and study the impact of digital media on public discourse, all while leveraging AI-generated insights.

    This dataset is an essential resource for anyone looking to understand the intricacies of Reddit's vast ecosystem, offering the data and AI-enhanced insights needed to drive informed decisions and strategies across various fields. Whether you’re tracking emerging trends, analyzing user behavior, or conduc...

  11. c

    Sentiment Analysis Dataset

    • cubig.ai
    zip
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Sentiment Analysis Dataset [Dataset]. https://cubig.ai/store/products/270/sentiment-analysis-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Sentiment Analysis Dataset is a dataset for emotional analysis, including large-scale tweet text collected from Twitter and emotional polarity (0=negative, 2=neutral, 4=positive) labels for each tweet, featuring automatic labeling based on emoticons.

    2) Data Utilization (1) Sentiment Analysis Dataset has characteristics that: • Each sample consists of six columns: emotional polarity, tweet ID, date of writing, search word, author, and tweet body, and is suitable for training natural language processing and classification models using tweet text and emotion labels. (2) Sentiment Analysis Dataset can be used to: • Emotional Classification Model Development: Using tweet text and emotional polarity labels, we can build positive, negative, and neutral emotional automatic classification models with various machine learning and deep learning models such as logistic regression, SVM, RNN, and LSTM. • Analysis of SNS public opinion and trends: By analyzing the distribution of emotions by time series and keywords, you can explore changes in public opinion on specific issues or brands, positive and negative trends, and key emotional keywords.

  12. d

    AI Training Data | US Transcription Data| Unique Consumer Sentiment Data:...

    • datarade.ai
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WiserBrand.com (2025). AI Training Data | US Transcription Data| Unique Consumer Sentiment Data: Transcription of the calls to the companies [Dataset]. https://datarade.ai/data-products/wiserbrand-ai-training-data-us-transcription-data-unique-wiserbrand-com
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    WiserBrand
    Area covered
    United States
    Description

    WiserBrand's Comprehensive Customer Call Transcription Dataset: Tailored Insights

    WiserBrand offers a customizable dataset comprising transcribed customer call records, meticulously tailored to your specific requirements. This extensive dataset includes:

    • User ID and Firm Name: Identify and categorize calls by unique user IDs and company names.
    • Call Duration: Analyze engagement levels through call lengths.
    • Geographical Information: Detailed data on city, state, and country for regional analysis.
    • Call Timing: Track peak interaction times with precise timestamps.
    • Call Reason and Group: Categorised reasons for calls, helping to identify common customer issues.
    • Device and OS Types: Information on the devices and operating systems used for technical support analysis. Transcriptions: Full-text transcriptions of each call, enabling sentiment analysis, keyword extraction, and detailed interaction reviews.

    WiserBrand's dataset is essential for companies looking to leverage Consumer Data and B2B Marketing Data to drive their strategic initiatives in the English-speaking markets of the USA, UK, and Australia. By accessing this rich dataset, businesses can uncover trends and insights critical for improving customer engagement and satisfaction.

    Cases:

    1. Training Speech Recognition (Speech-to-Text) and Speech Synthesis (Text-to-Speech) Models

    WiserBrand's Comprehensive Customer Call Transcription Dataset is an excellent resource for training and improving speech recognition models (Speech-to-Text, STT) and speech synthesis systems (Text-to-Speech, TTS). Here’s how this dataset can contribute to these tasks:

    Enriching STT Models: The dataset comprises a diverse range of real-world customer service calls, featuring various accents, tones, and terminologies. This makes it highly valuable for training speech-to-text models to better recognize different dialects, regional speech patterns, and industry-specific jargon. It could help improve accuracy in transcribing conversations in customer service, sales, or technical support.

    Contextualized Speech Recognition: Given the contextual information (e.g., reasons for calls, call categories, etc.), it can help models differentiate between various types of conversations (technical support vs. sales queries), which would improve the model’s ability to transcribe in a more contextually relevant manner.

    Improving TTS Systems: The transcriptions, along with their associated metadata (such as call duration, timing, and call reason), can aid in training Text-to-Speech models that mimic natural conversation patterns, including pauses, tone variation, and proper intonation. This is especially beneficial for developing conversational agents that sound more natural and human-like in their responses.

    Noise and Speech Quality Handling: Real-world customer service calls often contain background noise, overlapping speech, and interruptions, which are crucial elements for training speech models to handle real-life scenarios more effectively.

    1. Training AI Agents for Replacing Customer Service Representatives WiserBrand’s dataset can be incredibly valuable for businesses looking to develop AI-powered customer support agents that can replace or augment human customer service representatives. Here’s how this dataset supports AI agent training:

    Customer Interaction Simulation: The transcriptions provide a comprehensive view of real customer interactions, including common queries, complaints, and support requests. By training AI models on this data, businesses can equip their virtual agents with the ability to understand customer concerns, follow up on issues, and provide meaningful solutions, all while mimicking human-like conversational flow.

    Sentiment Analysis and Emotional Intelligence: The full-text transcriptions, along with associated call metadata (e.g., reason for the call, call duration, and geographical data), allow for sentiment analysis, enabling AI agents to gauge the emotional tone of customers. This helps the agents respond appropriately, whether it’s providing reassurance during frustrating technical issues or offering solutions in a polite, empathetic manner. Such capabilities are essential for improving customer satisfaction in automated systems.

    Customizable Dialogue Systems: The dataset allows for categorizing and identifying recurring call patterns and issues. This means AI agents can be trained to recognize the types of queries that come up frequently, allowing them to automate routine tasks such as order inquiries, account management, or technical troubleshooting without needing human intervention.

    Improving Multilingual and Cross-Regional Support: Given that the dataset includes geographical information (e.g., city, state, and country), AI agents can be trained to recognize region-specific slang, phrases, and cultural nuances, which is particularly valuable for multinational companies operating in diverse markets (e.g., the USA, UK, and Australia...

  13. A

    AI Training Dataset In Healthcare Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). AI Training Dataset In Healthcare Market Report [Dataset]. https://www.archivemarketresearch.com/reports/ai-training-dataset-in-healthcare-market-5352
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The AI Training Dataset In Healthcare Market size was valued at USD 341.8 million in 2023 and is projected to reach USD 1464.13 million by 2032, exhibiting a CAGR of 23.1 % during the forecasts period. The growth is attributed to the rising adoption of AI in healthcare, increasing demand for accurate and reliable training datasets, government initiatives to promote AI in healthcare, and technological advancements in data collection and annotation. These factors are contributing to the expansion of the AI Training Dataset In Healthcare Market. Healthcare AI training data sets are vital for building effective algorithms, and enhancing patient care and diagnosis in the industry. These datasets include large volumes of Electronic Health Records, images such as X-ray and MRI scans, and genomics data which are thoroughly labeled. They help the AI systems to identify trends, forecast and even help in developing unique approaches to treating the disease. However, patient privacy and ethical use of a patient’s information is of the utmost importance, thus requiring high levels of anonymization and compliance with laws such as HIPAA. Ongoing expansion and variety of datasets are crucial to address existing bias and improve the efficiency of AI for different populations and diseases to provide safer solutions for global people’s health.

  14. ShutterStock Dataset for AI vs Human-Gen. Image

    • kaggle.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sachin Singh (2025). ShutterStock Dataset for AI vs Human-Gen. Image [Dataset]. https://www.kaggle.com/datasets/shreyasraghav/shutterstock-dataset-for-ai-vs-human-gen-image
    Explore at:
    zip(11617243112 bytes)Available download formats
    Dataset updated
    Jun 19, 2025
    Authors
    Sachin Singh
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    ShutterStock AI vs. Human-Generated Image Dataset

    This dataset is curated to facilitate research in distinguishing AI-generated images from human-created ones, leveraging ShutterStock data. As AI-generated imagery becomes more sophisticated, developing models that can classify and analyze such images is crucial for applications in content moderation, digital forensics, and media authenticity verification.

    Dataset Overview:

    • Total Images: 100,000
    • Training Data: 80,000 images (majority AI-generated)
    • Test Data: 20,000 images
    • Image Sources: A mix of AI-generated images and real photographs or illustrations created by human artists
    • Labeling: Each image is labeled as either AI-generated or human-created

    Potential Use Cases:

    • AI-Generated Image Detection: Train models to distinguish between AI and human-made images.
    • Deep Learning & Computer Vision Research: Develop and benchmark CNNs, transformers, and other architectures.
    • Generative Model Evaluation: Compare AI-generated images to real images for quality assessment.
    • Digital Forensics: Identify synthetic media for applications in fake image detection.
    • Ethical AI & Content Authenticity: Study the impact of AI-generated visuals in media and ensure transparency.

    Why This Dataset?

    With the rise of generative AI models like Stable Diffusion, DALL·E, and MidJourney, the ability to differentiate between synthetic and real images has become a crucial challenge. This dataset offers a structured way to train AI models on this task, making it a valuable resource for both academic research and practical applications.

    Explore the dataset and contribute to advancing AI-generated content detection!

    Step 1: Install and Authenticate Kaggle API

    If you haven't installed the Kaggle API, run:
    bash pip install kaggle Then, download your kaggle.json API key from Kaggle Account and move it to ~/.kaggle/ (Linux/Mac) or `C:\Users\YourUser.kaggle` (Windows).

    Step 2: Use wget

      wget --no-check-certificate --header "Authorization: Bearer $(cat ~/.kaggle/kaggle.json | jq -r .token)" "https://www.kaggle.com/datasets/shreyasraghav/shutterstock-dataset-for-ai-vs-human-gen-image" -O dataset.zip
    

    Step 3: Extract the Dataset

    Once downloaded, extract the dataset using:
    bash unzip dataset.zip -d dataset_folder

    Now your dataset is ready to use! 🚀

  15. artificalintelligence tweets

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vishal Gaikwad (2023). artificalintelligence tweets [Dataset]. https://www.kaggle.com/datasets/gaikwadvishal114/artificalintelligence-tweets
    Explore at:
    zip(506634 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Vishal Gaikwad
    Description

    The dataset for tweets of artificial intelligence is a collection of tweets related to the field of artificial intelligence, machine learning, and data science. The dataset contains over 5,000 tweets that were collected using Twitter's API and cover a wide range of topics related to AI.

    Each tweet in the dataset includes the full text of the tweet, the user who posted it, the date and time it was posted, and the number of retweets, likes, and replies it has received. The dataset also includes metadata such as the user's profile information and location, which can be used to gain insights into the demographics of the AI community on Twitter.

    The dataset can be used for various applications, including sentiment analysis, topic modeling, and trend analysis related to artificial intelligence. It can also be used to train machine learning models to recognize patterns in the data and make predictions about future trends in the field.

  16. m

    AI Analysis Dataset for BD60LNN

    • motorhistory.co.uk
    Updated Nov 15, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Motor History AI (2010). AI Analysis Dataset for BD60LNN [Dataset]. https://www.motorhistory.co.uk/vehicle/bd60lnn-peugeot-207
    Explore at:
    Dataset updated
    Nov 15, 2010
    Dataset authored and provided by
    Motor History AI
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2025 - 2029
    Variables measured
    market trends, predicted value, depreciation rate, lifespan estimate
    Description

    Comprehensive AI analysis data for BD60LNN including predictions and market insights

  17. h

    data-analysis-ai-agent

    • huggingface.co
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DeepNLP (2025). data-analysis-ai-agent [Dataset]. https://huggingface.co/datasets/DeepNLP/data-analysis-ai-agent
    Explore at:
    Dataset updated
    Apr 3, 2025
    Authors
    DeepNLP
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Data Analysis Agent Meta and Traffic Dataset in AI Agent Marketplace | AI Agent Directory | AI Agent Index from DeepNLP

    This dataset is collected from AI Agent Marketplace Index and Directory at http://www.deepnlp.org, which contains AI Agents's meta information such as agent's name, website, description, as well as the monthly updated Web performance metrics, including Google,Bing average search ranking positions, Github Stars, Arxiv References, etc. The dataset is helpful for AI… See the full description on the dataset page: https://huggingface.co/datasets/DeepNLP/data-analysis-ai-agent.

  18. G

    AI Dataset Search Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). AI Dataset Search Platform Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/ai-dataset-search-platform-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Dataset Search Platform Market Outlook



    According to our latest research, the global AI Dataset Search Platform market size is valued at USD 1.18 billion in 2024, with a robust year-over-year expansion driven by the escalating demand for high-quality datasets to fuel artificial intelligence and machine learning initiatives across industries. The market is expected to grow at a CAGR of 22.6% from 2025 to 2033, reaching an estimated USD 9.62 billion by 2033. This exponential growth is primarily attributed to the increasing recognition of data as a strategic asset, the proliferation of AI applications across sectors, and the need for efficient, scalable, and secure platforms to discover, curate, and manage diverse datasets.



    One of the primary growth factors propelling the AI Dataset Search Platform market is the exponential surge in AI adoption across both public and private sectors. Businesses and institutions are increasingly leveraging AI to gain competitive advantages, enhance operational efficiencies, and deliver personalized experiences. However, the effectiveness of AI models is fundamentally reliant on the quality and diversity of training datasets. As organizations strive to accelerate their AI initiatives, the need for platforms that can efficiently search, aggregate, and validate datasets from disparate sources has become paramount. This has led to a significant uptick in investments in AI dataset search platforms, as they enable faster data discovery, reduce development cycles, and ensure compliance with data governance standards.



    Another key driver for the market is the growing complexity and volume of data generated from emerging technologies such as IoT, edge computing, and connected devices. The sheer scale and heterogeneity of data sources necessitate advanced search platforms equipped with intelligent indexing, semantic search, and metadata management capabilities. These platforms not only facilitate the identification of relevant datasets but also support data annotation, labeling, and preprocessing, which are critical for building robust AI models. Furthermore, the integration of AI-powered search algorithms within these platforms enhances the accuracy and relevance of search results, thereby improving the overall efficiency of data scientists and AI practitioners.



    Additionally, regulatory pressures and the increasing emphasis on ethical AI have underscored the importance of transparent and auditable data sourcing. Organizations are compelled to demonstrate the provenance and integrity of the datasets used in their AI models to mitigate risks related to bias, privacy, and compliance. AI dataset search platforms address these challenges by providing traceability, version control, and access management features, ensuring that only authorized and compliant datasets are utilized. This not only reduces legal and reputational risks but also fosters trust among stakeholders, further accelerating market adoption.



    From a regional perspective, North America dominates the AI Dataset Search Platform market in 2024, accounting for over 38% of the global revenue. This leadership is driven by the presence of major technology providers, a mature AI ecosystem, and substantial investments in research and development. Europe follows closely, benefiting from stringent data privacy regulations and strong government support for AI innovation. The Asia Pacific region is experiencing the fastest growth, propelled by rapid digital transformation, expanding AI research communities, and increasing government initiatives to foster AI adoption. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as organizations in these regions gradually embrace AI-driven solutions.





    Component Analysis



    The AI Dataset Search Platform market by component is segmented into platforms and services, each playing a pivotal role in the ecosystem. The platform segment encompasses the core software infrastructure that enables users to search, index, curate, and manage datasets. This segmen

  19. m

    AI Training Dataset Market - Global Opportunity Analysis And Industry...

    • meticulousresearch.com
    Updated Dec 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meticulous Market Research Pvt Ltd (2022). AI Training Dataset Market - Global Opportunity Analysis And Industry Forecast (2022-2029) [Dataset]. https://www.meticulousresearch.com/product/ai-training-dataset-market-5400
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset authored and provided by
    Meticulous Market Research Pvt Ltd
    License

    https://www.meticulousresearch.com/privacy-policyhttps://www.meticulousresearch.com/privacy-policy

    Area covered
    Asia Pacific, North America, Latin America, Middle East & Africa, Europe, Global
    Description

    AI Training Dataset Market, by Type (Text, Audio, Image & Video), End-use Industry, and Geography - Global Forecast to 2029

  20. AI-Powered Job Market Insights

    • kaggle.com
    zip
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laksika Tharmalingam (2024). AI-Powered Job Market Insights [Dataset]. https://www.kaggle.com/datasets/uom190346a/ai-powered-job-market-insights/code
    Explore at:
    zip(10659 bytes)Available download formats
    Dataset updated
    Aug 26, 2024
    Authors
    Laksika Tharmalingam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description: "AI-Powered Job Market Insights"

    Overview:

    The "AI-Powered Job Market Insights" dataset provides a synthetic but realistic snapshot of the modern job market, particularly focusing on the role of artificial intelligence (AI) and automation across various industries. This dataset includes 500 unique job listings, each characterized by different factors like industry, company size, AI adoption level, automation risk, required skills, and job growth projections. It is designed to be a valuable resource for researchers, data scientists, and policymakers exploring the impact of AI on employment, job market trends, and the future of work.

    Dataset Features:

    1. Job_Title:

      • Description: The title of the job role.
      • Type: Categorical
      • Example Values: "Data Scientist", "Software Engineer", "HR Manager"
    2. Industry:

      • Description: The industry in which the job is located.
      • Type: Categorical
      • Example Values: "Technology", "Healthcare", "Finance"
    3. Company_Size:

      • Description: The size of the company offering the job.
      • Type: Categorical
      • Categories: "Small", "Medium", "Large"
    4. Location:

      • Description: The geographic location of the job.
      • Type: Categorical
      • Example Values: "New York", "San Francisco", "London"
    5. AI_Adoption_Level:

      • Description: The extent to which the company has adopted AI in its operations.
      • Type: Categorical
      • Categories: "Low", "Medium", "High"
    6. Automation_Risk:

      • Description: The estimated risk that the job could be automated within the next 10 years.
      • Type: Categorical
      • Categories: "Low", "Medium", "High"
    7. Required_Skills:

      • Description: The key skills required for the job role.
      • Type: Categorical
      • Example Values: "Python", "Data Analysis", "Project Management"
    8. Salary_USD:

      • Description: The annual salary offered for the job in USD.
      • Type: Numerical
      • Value Range: $30,000 - $200,000
    9. Remote_Friendly:

      • Description: Indicates whether the job can be performed remotely.
      • Type: Categorical
      • Categories: "Yes", "No"
    10. Job_Growth_Projection:

      • Description: The projected growth or decline of the job role over the next five years.
      • Type: Categorical
      • Categories: "Decline", "Stable", "Growth"

    Potential Use Cases:

    • AI and Job Market Research: Analyzing the impact of AI adoption on different industries and job roles.
    • Skill Gap Analysis: Understanding which skills are in demand across industries and how AI influences this demand.
    • Policy Making: Assisting policymakers in identifying job roles at high risk of automation and strategizing for workforce transitions.
    • Salary Analysis: Exploring the correlation between AI adoption and salary ranges across different job titles and locations.

    Notes:

    • This dataset is entirely synthetic and generated for educational and research purposes. While it mimics real-world data, it does not represent any actual company, job, or individual. The data can be used to model, predict, and analyze trends in the AI-driven job market but should not be used for real-world decision-making without validation against actual data.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
shubham Kumar (2024). 150+ Famous AI Tools [Dataset]. https://www.kaggle.com/datasets/shubhamoujlayan/150-famous-ai-tools
Organization logo

150+ Famous AI Tools

Most useful AI Tools for every work.

Explore at:
zip(3110 bytes)Available download formats
Dataset updated
Aug 13, 2024
Authors
shubham Kumar
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset provides an overview of various AI tools, capturing key attributes that highlight their popularity, subscription models, and the categories they fall under. It can serve as a valuable resource for analyzing trends in AI tool usage, comparing different tools based on user feedback, and understanding the market positioning of these tools.

Columns: Name: The name of the AI tool, representing various applications and services in the AI domain. Votes: The number of votes or ratings each tool has received, reflecting its popularity and user acceptance. Subscription: The type of subscription model the tool offers, indicating whether it is free, freemium (a mix of free and paid features), or paid. Category: A list of categories associated with each tool, identifying the primary industries or use cases it caters to, such as: Human Resources Legal AI Chatbots Marketing Education Video Generators Writing Generators Storytellers Presentations Startup Tools Dataset Use Cases: Market Analysis: Understand which AI tools are most popular based on user votes and explore trends across different categories. Product Comparison: Compare AI tools based on their subscription models, identifying which tools offer free or freemium options versus paid-only models. Category Insights: Analyze the distribution of AI tools across various categories to see where innovation and adoption are most concentrated.

Search
Clear search
Close search
Google apps
Main menu