100+ datasets found
  1. V

    Department of Transportation Inventory of Artificial Intelligence Use Cases

    • data.virginia.gov
    • data.transportation.gov
    • +1more
    csv, json, rdf, xsl
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Department of Transportation Inventory of Artificial Intelligence Use Cases [Dataset]. https://data.virginia.gov/dataset/department-of-transportation-inventory-of-artificial-intelligence-use-cases
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Nov 14, 2024
    Dataset provided by
    US Department of Transportation
    Authors
    U.S Department of Transportation
    Description

    This dataset is a list of Department of Transportation (DOT) Artificial Intelligence (AI) use cases.

    Artificial intelligence (AI) promises to drive the growth of the United States economy and improve the quality of life of all Americans. Pursuant to Section 5 of Executive Order (EO) 13960, "Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government," Federal agencies are required to inventory their AI use cases and share their inventories with other government agencies and the public.

    In accordance with the requirements of EO 13960, this spreadsheet provides the mechanism for federal agencies to create their inaugural AI use case inventories.

    https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government

  2. Use of AI for selected purposes by organizations in the United States 2023

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Use of AI for selected purposes by organizations in the United States 2023 [Dataset]. https://www.statista.com/statistics/1440900/us-organizations-use-of-ai-for-selected-purposes/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023
    Area covered
    United States
    Description

    It is now agreed that artificial intelligence (AI) will significantly impact almost every industry in the coming years. In 2024, nearly ********* of respondents working for companies in the United States (U.S.) reported already using AI for data analysis, while ** percent mentioned using it for cybersecurity. In addition, almost ** percent of respondents reported using this technology for design tasks. Financial analysis ranked third, with around ** percent of respondents mentioning this use case. On the other hand, only *** percent reported using it for legal research.

  3. Share of SMBs who use AI for data analysis in the U.S. 2023

    • tokrwards.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of SMBs who use AI for data analysis in the U.S. 2023 [Dataset]. https://tokrwards.com/?_=%2Fstatistics%2F1427839%2Fsmbs-ai-use-data-analysis-usa%2F%23D%2FIbH0Phabzc8oKQxRXLgxTyDkFTtCs%3D
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 10, 2023 - Aug 23, 2023
    Area covered
    United States
    Description

    During an August 2023 survey, approximately ** percent of surveyed small or medium business (SMB) owners used artificial intelligence (AI) for data analysis. ** percent of respondents said they would consider using AI in the future, while another ** percent stated they were not planning on using AI for this purpose.

  4. North America Artificial Intelligence (AI) Data Center Market Size & Share...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). North America Artificial Intelligence (AI) Data Center Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/north-america-artificial-intelligence-ai-data-center-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    North America
    Description

    North America Artificial Intelligence Data Center Market Report is Segmented by Data Center Type (CSP Data Centers, Colocation Data Centers, Others (Enterprise and Edge)), by Component (Hardware, Software Technology, Services - (Managed Services, Professional Services, Etc). The Report Offers the Market Size and Forecasts for all the Above Segments in Terms of Value (USD).

  5. Use of AI in administrative and data analysis tasks in the USA and UK 2023

    • tokrwards.com
    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Use of AI in administrative and data analysis tasks in the USA and UK 2023 [Dataset]. https://tokrwards.com/?_=%2Fstatistics%2F1453320%2Fuse-share-ai-routine-logic-based-tasks%2F%23D%2FIbH0PhabzN99vNwgDeng71Gw4euCn%2B
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2023
    Area covered
    United Kingdom, United States
    Description

    As of 2023, about ** percent of surveyed employees from companies in the United States of America and United Kingdom claim to use artificial intelligence (AI) in the logic-based task of data analysis. Approximately ** percent claim to use it for routine administrative tasks. These numbers are forecasted to grow, as the share of employees that wish to use the technology for both tasks is much higher, lying around ** percent.

  6. AI Training Dataset Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). AI Training Dataset Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/ai-training-dataset-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, United States
    Description

    Snapshot img

    AI Training Dataset Market Size 2025-2029

    The ai training dataset market size is valued to increase by USD 7.33 billion, at a CAGR of 29% from 2024 to 2029. Proliferation and increasing complexity of foundational AI models will drive the ai training dataset market.

    Market Insights

    North America dominated the market and accounted for a 36% growth during the 2025-2029.
    By Service Type - Text segment was valued at USD 742.60 billion in 2023
    By Deployment - On-premises segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 479.81 million 
    Market Future Opportunities 2024: USD 7334.90 million
    CAGR from 2024 to 2029 : 29%
    

    Market Summary

    The market is experiencing significant growth as businesses increasingly rely on artificial intelligence (AI) to optimize operations, enhance customer experiences, and drive innovation. The proliferation and increasing complexity of foundational AI models necessitate large, high-quality datasets for effective training and improvement. This shift from data quantity to data quality and curation is a key trend in the market. Navigating data privacy, security, and copyright complexities, however, poses a significant challenge. Businesses must ensure that their datasets are ethically sourced, anonymized, and securely stored to mitigate risks and maintain compliance. For instance, in the supply chain optimization sector, companies use AI models to predict demand, optimize inventory levels, and improve logistics. Access to accurate and up-to-date training datasets is essential for these applications to function efficiently and effectively. Despite these challenges, the benefits of AI and the need for high-quality training datasets continue to drive market growth. The potential applications of AI are vast and varied, from healthcare and finance to manufacturing and transportation. As businesses continue to explore the possibilities of AI, the demand for curated, reliable, and secure training datasets will only increase.

    What will be the size of the AI Training Dataset Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleThe market continues to evolve, with businesses increasingly recognizing the importance of high-quality datasets for developing and refining artificial intelligence models. According to recent studies, the use of AI in various industries is projected to grow by over 40% in the next five years, creating a significant demand for training datasets. This trend is particularly relevant for boardrooms, as companies grapple with compliance requirements, budgeting decisions, and product strategy. Moreover, the importance of data labeling, feature selection, and imbalanced data handling in model performance cannot be overstated. For instance, a mislabeled dataset can lead to biased and inaccurate models, potentially resulting in costly errors. Similarly, effective feature selection algorithms can significantly improve model accuracy and reduce computational resources. Despite these challenges, advances in model compression methods, dataset scalability, and data lineage tracking are helping to address some of the most pressing issues in the market. For example, model compression techniques can reduce the size of models, making them more efficient and easier to deploy. Similarly, data lineage tracking can help ensure data consistency and improve model interpretability. In conclusion, the market is a critical component of the broader AI ecosystem, with significant implications for businesses across industries. By focusing on data quality, effective labeling, and advanced techniques for handling imbalanced data and improving model performance, organizations can stay ahead of the curve and unlock the full potential of AI.

    Unpacking the AI Training Dataset Market Landscape

    In the realm of artificial intelligence (AI), the significance of high-quality training datasets is indisputable. Businesses harnessing AI technologies invest substantially in acquiring and managing these datasets to ensure model robustness and accuracy. According to recent studies, up to 80% of machine learning projects fail due to insufficient or poor-quality data. Conversely, organizations that effectively manage their training data experience an average ROI improvement of 15% through cost reduction and enhanced model performance.

    Distributed computing systems and high-performance computing facilitate the processing of vast datasets, enabling businesses to train models at scale. Data security protocols and privacy preservation techniques are crucial to protect sensitive information within these datasets. Reinforcement learning models and supervised learning models each have their unique applications, with the former demonstrating a 30% faster convergence rate in certain use cases.

    Data annot

  7. South America Artificial Intelligence (AI) Data Center Market Size & Share...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). South America Artificial Intelligence (AI) Data Center Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/south-america-artificial-intelligence-ai-data-center-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Aug 26, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    South America
    Description

    South America Artificial Intelligence Data Center Market Report is Segmented by Data Center Type (CSP Data Centers, Colocation Data Centers, Others (Enterprise and Edge)), by Component (Hardware, Software Technology, Services - (Managed Services, Professional Services, Etc. ). The Report Offers the Market Size and Forecasts for all the Above Segments in Terms of Value (USD).

  8. American Time Use Survey

    • catalog.data.gov
    • datasets.ai
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). American Time Use Survey [Dataset]. https://catalog.data.gov/dataset/american-time-use-survey-66559
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The American Time Use Survey (ATUS) provides nationally representative estimates of how, where, and with whom Americans spend their time, and is the only federal survey providing data on the full range of nonmarket activities, from childcare to volunteering. For more information visit https://www.bls.gov/tus/

  9. d

    AI Training Data | US Transcription Data| Unique Consumer Sentiment Data:...

    • datarade.ai
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WiserBrand.com (2025). AI Training Data | US Transcription Data| Unique Consumer Sentiment Data: Transcription of the calls to the companies [Dataset]. https://datarade.ai/data-products/wiserbrand-ai-training-data-us-transcription-data-unique-wiserbrand-com
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    WiserBrand.com
    Area covered
    United States
    Description

    WiserBrand's Comprehensive Customer Call Transcription Dataset: Tailored Insights

    WiserBrand offers a customizable dataset comprising transcribed customer call records, meticulously tailored to your specific requirements. This extensive dataset includes:

    User ID and Firm Name: Identify and categorize calls by unique user IDs and company names. Call Duration: Analyze engagement levels through call lengths. Geographical Information: Detailed data on city, state, and country for regional analysis. Call Timing: Track peak interaction times with precise timestamps. Call Reason and Group: Categorised reasons for calls, helping to identify common customer issues. Device and OS Types: Information on the devices and operating systems used for technical support analysis. Transcriptions: Full-text transcriptions of each call, enabling sentiment analysis, keyword extraction, and detailed interaction reviews.

    Our dataset is designed for businesses aiming to enhance customer service strategies, develop targeted marketing campaigns, and improve product support systems. Gain actionable insights into customer needs and behavior patterns with this comprehensive collection, particularly useful for Consumer Data, Consumer Behavior Data, Consumer Sentiment Data, Consumer Review Data, AI Training Data, Textual Data, and Transcription Data applications.

    WiserBrand's dataset is essential for companies looking to leverage Consumer Data and B2B Marketing Data to drive their strategic initiatives in the English-speaking markets of the USA, UK, and Australia. By accessing this rich dataset, businesses can uncover trends and insights critical for improving customer engagement and satisfaction.

    Cases:

    1. Training Speech Recognition (Speech-to-Text) and Speech Synthesis (Text-to-Speech) Models WiserBrand's Comprehensive Customer Call Transcription Dataset is an excellent resource for training and improving speech recognition models (Speech-to-Text, STT) and speech synthesis systems (Text-to-Speech, TTS). Here’s how this dataset can contribute to these tasks:

    Enriching STT Models: The dataset includes a wide variety of real-world customer service calls with diverse accents, tones, and terminologies. This makes it highly valuable for training speech-to-text models to better recognize different dialects, regional speech patterns, and industry-specific jargon. It could help improve accuracy in transcribing conversations in customer service, sales, or technical support.

    Contextualized Speech Recognition: Given the contextual information (e.g., reasons for calls, call categories, etc.), it can help models differentiate between various types of conversations (technical support vs. sales queries), which would improve the model’s ability to transcribe in a more contextually relevant manner.

    Improving TTS Systems: The transcriptions, along with their associated metadata (such as call duration, timing, and call reason), can aid in training Text-to-Speech models that mimic natural conversation patterns, including pauses, tone variation, and proper intonation. This is especially beneficial for developing conversational agents that sound more natural and human-like in their responses.

    Noise and Speech Quality Handling: Real-world customer service calls often contain background noise, overlapping speech, and interruptions, which are crucial elements for training speech models to handle real-life scenarios more effectively.

    1. Training AI Agents for Replacing Customer Service Representatives WiserBrand’s dataset can be incredibly valuable for businesses looking to develop AI-powered customer support agents that can replace or augment human customer service representatives. Here’s how this dataset supports AI agent training:

    Customer Interaction Simulation: The transcriptions provide a comprehensive view of real customer interactions, including common queries, complaints, and support requests. By training AI models on this data, businesses can equip their virtual agents with the ability to understand customer concerns, follow up on issues, and provide meaningful solutions, all while mimicking human-like conversational flow.

    Sentiment Analysis and Emotional Intelligence: The full-text transcriptions, along with associated call metadata (e.g., reason for the call, call duration, and geographical data), allow for sentiment analysis, enabling AI agents to gauge the emotional tone of customers. This helps the agents respond appropriately, whether it’s providing reassurance during frustrating technical issues or offering solutions in a polite, empathetic manner. Such capabilities are essential for improving customer satisfaction in automated systems.

    Customizable Dialogue Systems: The dataset allows for categorizing and identifying recurring call patterns and issues. This means AI agents can be trained to recognize the types of queries that come up frequently, allowing them to automate routine tasks such as ...

  10. h

    ai-jobs-news-articles

    • huggingface.co
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florent Daudens (2025). ai-jobs-news-articles [Dataset]. https://huggingface.co/datasets/fdaudens/ai-jobs-news-articles
    Explore at:
    Dataset updated
    Jun 15, 2025
    Authors
    Florent Daudens
    Description

    Dataset Summary

    This dataset brings together 1,000 English-language news articles all about the impact of artificial intelligence on jobs and the workforce. From automation to new tech-driven opportunities, these articles cover a wide range of perspectives and industries. It’s a great resource for anyone interested in how AI is shaping the future of work. Source Data The articles were collected from various reputable news outlets, focusing on recent developments and trends at the… See the full description on the dataset page: https://huggingface.co/datasets/fdaudens/ai-jobs-news-articles.

  11. US Deep Learning Market Analysis, Size, and Forecast 2025-2029

    • technavio.com
    pdf
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    US Deep Learning Market Size 2025-2029

    The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

    The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 
    
    
    However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

    In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    End-user
    
      Security
      Automotive
      Healthcare
      Retail and commerce
      Others
    
    
    Geography
    
      North America
    
        US
    

    By Application Insights

    The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

    Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates the loss fu

  12. U.S AI Training Dataset Market Size & Analysis, 2024-2032

    • polarismarketresearch.com
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research & Consulting, Inc. (2024). U.S AI Training Dataset Market Size & Analysis, 2024-2032 [Dataset]. https://www.polarismarketresearch.com/industry-analysis/us-ai-training-dataset-market
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Polaris Market Research & Consulting
    Authors
    Polaris Market Research & Consulting, Inc.
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    U.S. AI training dataset market size will be valued at USD 2,137.26 Million in 2032 and is projected to grow at a (CAGR) of 17.7%.

  13. Generative AI In Data Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Generative AI In Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/generative-ai-in-data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States, Canada
    Description

    Snapshot img

    Generative AI In Data Analytics Market Size 2025-2029

    The generative ai in data analytics market size is valued to increase by USD 4.62 billion, at a CAGR of 35.5% from 2024 to 2029. Democratization of data analytics and increased accessibility will drive the generative ai in data analytics market.

    Market Insights

    North America dominated the market and accounted for a 37% growth during the 2025-2029.
    By Deployment - Cloud-based segment was valued at USD 510.60 billion in 2023
    By Technology - Machine learning segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 621.84 million 
    Market Future Opportunities 2024: USD 4624.00 million
    CAGR from 2024 to 2029 : 35.5%
    

    Market Summary

    The market is experiencing significant growth as businesses worldwide seek to unlock new insights from their data through advanced technologies. This trend is driven by the democratization of data analytics and increased accessibility of AI models, which are now available in domain-specific and enterprise-tuned versions. Generative AI, a subset of artificial intelligence, uses deep learning algorithms to create new data based on existing data sets. This capability is particularly valuable in data analytics, where it can be used to generate predictions, recommendations, and even new data points. One real-world business scenario where generative AI is making a significant impact is in supply chain optimization. In this context, generative AI models can analyze historical data and generate forecasts for demand, inventory levels, and production schedules. This enables businesses to optimize their supply chain operations, reduce costs, and improve customer satisfaction. However, the adoption of generative AI in data analytics also presents challenges, particularly around data privacy, security, and governance. As businesses continue to generate and analyze increasingly large volumes of data, ensuring that it is protected and used in compliance with regulations is paramount. Despite these challenges, the benefits of generative AI in data analytics are clear, and its use is set to grow as businesses seek to gain a competitive edge through data-driven insights.

    What will be the size of the Generative AI In Data Analytics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleGenerative AI, a subset of artificial intelligence, is revolutionizing data analytics by automating data processing and analysis, enabling businesses to derive valuable insights faster and more accurately. Synthetic data generation, a key application of generative AI, allows for the creation of large, realistic datasets, addressing the challenge of insufficient data in analytics. Parallel processing methods and high-performance computing power the rapid analysis of vast datasets. Automated machine learning and hyperparameter optimization streamline model development, while model monitoring systems ensure continuous model performance. Real-time data processing and scalable data solutions facilitate data-driven decision-making, enabling businesses to respond swiftly to market trends. One significant trend in the market is the integration of AI-powered insights into business operations. For instance, probabilistic graphical models and backpropagation techniques are used to predict customer churn and optimize marketing strategies. Ensemble learning methods and transfer learning techniques enhance predictive analytics, leading to improved customer segmentation and targeted marketing. According to recent studies, businesses have achieved a 30% reduction in processing time and a 25% increase in predictive accuracy by implementing generative AI in their data analytics processes. This translates to substantial cost savings and improved operational efficiency. By embracing this technology, businesses can gain a competitive edge, making informed decisions with greater accuracy and agility.

    Unpacking the Generative AI In Data Analytics Market Landscape

    In the dynamic realm of data analytics, Generative AI algorithms have emerged as a game-changer, revolutionizing data processing and insights generation. Compared to traditional data mining techniques, Generative AI models can create new data points that mirror the original dataset, enabling more comprehensive data exploration and analysis (Source: Gartner). This innovation leads to a 30% increase in identified patterns and trends, resulting in improved ROI and enhanced business decision-making (IDC).

    Data security protocols are paramount in this context, with Classification Algorithms and Clustering Algorithms ensuring data privacy and compliance alignment. Machine Learning Pipelines and Deep Learning Frameworks facilitate seamless integration with Predictive Modeling Tools and Automated Report Generation on Cloud

  14. c

    The global AI Training Dataset Market size will be USD 2962.4 million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global AI Training Dataset Market size will be USD 2962.4 million in 2025. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-dataset-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global AI Training Dataset Market size will be USD 2962.4 million in 2025. It will expand at a compound annual growth rate (CAGR) of 28.60% from 2025 to 2033.

    North America held the major market share for more than 37% of the global revenue with a market size of USD 1096.09 million in 2025 and will grow at a compound annual growth rate (CAGR) of 26.4% from 2025 to 2033.
    Europe accounted for a market share of over 29% of the global revenue, with a market size of USD 859.10 million.
    APAC held a market share of around 24% of the global revenue with a market size of USD 710.98 million in 2025 and will grow at a compound annual growth rate (CAGR) of 30.6% from 2025 to 2033.
    South America has a market share of more than 3.8% of the global revenue, with a market size of USD 112.57 million in 2025 and will grow at a compound annual growth rate (CAGR) of 27.6% from 2025 to 2033.
    Middle East had a market share of around 4% of the global revenue and was estimated at a market size of USD 118.50 million in 2025 and will grow at a compound annual growth rate (CAGR) of 27.9% from 2025 to 2033.
    Africa had a market share of around 2.20% of the global revenue and was estimated at a market size of USD 65.17 million in 2025 and will grow at a compound annual growth rate (CAGR) of 28.3% from 2025 to 2033.
    Data Annotation category is the fastest growing segment of the AI Training Dataset Market
    

    Market Dynamics of AI Training Dataset Market

    Key Drivers for AI Training Dataset Market

    Government-Led Open Data Initiatives Fueling AI Training Dataset Market Growth

    In recent years, Government-initiated open data efforts have strongly driven the development of the AI Training Dataset Market through offering affordable, high-quality datasets that are vital in training sound AI models. For instance, the U.S. government's drive for openness and innovation can be seen through portals such as Data.gov, which provides an enormous collection of datasets from many industries, ranging from healthcare, finance, and transportation. Such datasets are basic building blocks in constructing AI applications and training models using real-world data. In the same way, the platform data.gov.uk, run by the U.K. government, offers ample datasets to aid AI research and development, creating an environment that is supportive of technological growth. By releasing such information into the public domain, governments not only enhance transparency but also encourage innovation in the AI industry, resulting in greater demand for training datasets and helping to drive the market's growth.

    India's IndiaAI Datasets Platform Accelerates AI Training Dataset Market Growth

    India's upcoming launch of the IndiaAI Datasets Platform in January 2025 is likely to greatly increase the AI Training Dataset Market. The project, which is part of the government's ?10,000 crore IndiaAI Mission, will establish an open-source repository similar to platforms such as HuggingFace to enable developers to create, train, and deploy AI models. The platform will collect datasets from central and state governments and private sector organizations to provide a wide and rich data pool. Through improved access to high-quality, non-personal data, the platform is filling an important requirement for high-quality datasets for training AI models, thus driving innovation and development in the AI industry. This public initiative reflects India's determination to become a global AI hub, offering the infrastructure required to facilitate startups, researchers, and businesses in creating cutting-edge AI solutions. The initiative not only simplifies data access but also creates a model for public-private partnerships in AI development.

    Restraint Factor for the AI Training Dataset Market

    Data Privacy Regulations Impeding AI Training Dataset Market Growth

    Strict data privacy laws are coming up as a major constraint in the AI Training Dataset Market since governments across the globe are establishing legislation to safeguard personal data. In the European Union, explicit consent for using personal data is required under the General Data Protection Regulation (GDPR), reducing the availability of datasets for training AI. Likewise, the data protection regulator in Brazil ordered Meta and others to stop the use of Brazilian personal data in training AI models due to dangers to individuals' funda...

  15. Users consent to AI's access to private data to improve e-shopping in the...

    • statista.com
    • tokrwards.com
    Updated Oct 15, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2016). Users consent to AI's access to private data to improve e-shopping in the U.S. 2024 [Dataset]. https://www.statista.com/study/18920/data-usage-in-marketing-and-advertising/
    Explore at:
    Dataset updated
    Oct 15, 2016
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    A survey conducted in the United States in 2024 shows how inclined customers are to share their personal information with artificial intelligence (AI) with the purpose of improving the buying experience. Around 46 percent of online shoppers do not want their information shared with AI, and those who are willing to share it (16 percent) would only do so if the private data was kept only by the chosen retailer. The same share of shoppers (16 percent) are unsure if they would allow their information to be accessed.

  16. d

    The National Artificial Intelligence Research and Development Strategic...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCO NITRD (2025). The National Artificial Intelligence Research and Development Strategic Plan: 2019 Update [Dataset]. https://catalog.data.gov/dataset/the-national-artificial-intelligence-research-and-development-strategic-plan-2019-update
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset provided by
    NCO NITRD
    Description

    Artificial intelligence (AI) holds tremendous promise to benefit nearly all aspects of society, including the economy, healthcare, security, the law, transportation, even technology itself. On February 11, 2019, the President signed Executive Order 13859, Maintaining American Leadership in Artificial Intelligence. This order launched the American AI Initiative, a concerted effort to promote and protect AI technology and innovation in the United States. The Initiative implements a whole-of-government strategy in collaboration and engagement with the private sector, academia, the public, and like-minded international partners. Among other actions, key directives in the Initiative call for Federal agencies to prioritize AI research and development (R&emp;D) investments, enhance access to high-quality cyberinfrastructure and data, ensure that the Nation leads in the development of technical standards for AI, and provide education and training opportunities to prepare the American workforce for the new era of AI. In support of the American AI Initiative, this National AI R&emp;D Strategic Plan: 2019 Update defines the priority areas for Federal investments in AI R&emp;D. This 2019 update builds upon the first National AI R&emp;D Strategic Plan released in 2016, accounting for new research, technical innovations, and other considerations that have emerged over the past three years. This update has been developed by leading AI researchers and research administrators from across the Federal Government, with input from the broader civil society, including from many of America’s leading academic research institutions, nonprofit organizations, and private sector technology companies. Feedback from these key stakeholders affirmed the continued relevance of each part of the 2016 Strategic Plan while also calling for greater attention to making AI trustworthy, to partnering with the private sector, and other imperatives.

  17. USAID Inventory of AI Use Cases 2024 (Dataset)

    • catalog.data.gov
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2025). USAID Inventory of AI Use Cases 2024 (Dataset) [Dataset]. https://catalog.data.gov/dataset/usaid-inventory-of-ai-use-cases-2024-dataset
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    This dataset contains an inventory of USAID AI use cases to comply with Section 5(e) of Executive Order (EO) 13960.

  18. h

    AI_Employment

    • huggingface.co
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacey Savage (2024). AI_Employment [Dataset]. https://huggingface.co/datasets/StaceyASavage/AI_Employment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 8, 2024
    Authors
    Stacey Savage
    Description

    Dataset Card for AI Use in Business from US Census Bureau

    This dataset is from the US Census Bureau and contains the segment about AI use in businesses.

      Dataset Details
    

    The BTOS questionnaire defines AI as computer systems and software able to perform tasks normally requiring human intelligence, such as decision-making, visual perception, speech recognition and language processing. Examples of AI technologies and applications include machine learning, natural language… See the full description on the dataset page: https://huggingface.co/datasets/StaceyASavage/AI_Employment.

  19. United States Artificial Intelligence (AI) Optimised Data Center Market Size...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). United States Artificial Intelligence (AI) Optimised Data Center Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-artificial-intelligence-ai-data-center-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Artificial Intelligence Optimised Data Center Market Report is Segmented by Data Center Type (CSP Data Centers, Colocation Data Centers, Others (Enterprise and Edge)), by Component (Hardware, Software Technology, Services - (Managed Services, Professional Services, Etc. ). The Report Offers the Market Size and Forecasts for all the Above Segments in Terms of Value (USD).

  20. e

    ChatGPT Usage by U.S. Census Region – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). ChatGPT Usage by U.S. Census Region – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Pacific, Mountain, New England, South Atlantic, Middle Atlantic, East North Central, East South Central, West North Central, West South Central
    Description

    This dataset presents ChatGPT usage patterns across U.S. Census regions, based on a 2025 nationwide survey. It tracks how often users followed, partially used, or never used ChatGPT by state region.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S Department of Transportation (2024). Department of Transportation Inventory of Artificial Intelligence Use Cases [Dataset]. https://data.virginia.gov/dataset/department-of-transportation-inventory-of-artificial-intelligence-use-cases

Department of Transportation Inventory of Artificial Intelligence Use Cases

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
json, csv, xsl, rdfAvailable download formats
Dataset updated
Nov 14, 2024
Dataset provided by
US Department of Transportation
Authors
U.S Department of Transportation
Description

This dataset is a list of Department of Transportation (DOT) Artificial Intelligence (AI) use cases.

Artificial intelligence (AI) promises to drive the growth of the United States economy and improve the quality of life of all Americans. Pursuant to Section 5 of Executive Order (EO) 13960, "Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government," Federal agencies are required to inventory their AI use cases and share their inventories with other government agencies and the public.

In accordance with the requirements of EO 13960, this spreadsheet provides the mechanism for federal agencies to create their inaugural AI use case inventories.

https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government

Search
Clear search
Close search
Google apps
Main menu