Facebook
TwitterThe FTSE All-Share Index shed around ** percent of its value between January and March 2020, largely due to the coronavirus (COVID-19) pandemic. Then, it recovered to reach ******** points at the end of June 2021 - the third-highest value over the period surveyed and well above its value of *** points in January 2020. Since the beginning of 2022, however, the Index dropped again under 1,000 points. As of February 2025, it was recorded at ****** points.The FTSE AIM All-Share Index contains all companies listed in the Alternative Investment Market (AIM) of the London Stock Exchange (LSE). AIM offers a more flexible regulatory system, catering for companies that are smaller, less-developed or which want/need a more flexibility around governance.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Financial Market: Share Prices for United Kingdom (SPASTT01GBM661N) from Dec 1957 to Oct 2025 about stock market and United Kingdom.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Stocks, Value of Shares Sold on the New York Stock Exchange for United States (M11003USM144NNBR) from Jan 1885 to Dec 1920 about stock market and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a comprehensive historical record of stock prices from the Dhaka Stock Exchange (DSE), the primary stock exchange of Bangladesh. Spanning from January 1, 2000, to February 26, 2025, it offers a detailed look into the daily trading activity of 464 unique stocks.
This dataset was meticulously compiled and cleaned to provide a valuable resource for researchers, analysts, and investors interested in the Dhaka Stock Exchange.
While efforts have been made to ensure the accuracy of the data, users are advised to conduct their own due diligence and validation before making any investment decisions based on this dataset.
This description highlights the key aspects of your dataset, its potential uses, and its reliability. Feel free to adjust it further based on any specific details or insights you want to emphasize!
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This comprehensive dataset provides historical stock price data spanning various time periods, offering insights into the fluctuations and trends in the stock market over time. With records covering multiple decades, investors, analysts, and researchers can explore the dynamics of different stocks, industries, and market sectors.
The dataset includes essential information such as opening price, closing price, highest and lowest prices, trading volume, and adjusted closing prices. It encompasses a diverse range of stocks, including those from various exchanges and sectors, allowing for extensive analysis and comparison.
Researchers can utilize this dataset to conduct thorough analyses, develop financial models, backtest trading strategies, and gain a deeper understanding of market behavior. Investors can assess the performance of individual stocks or portfolios over extended periods, aiding in informed decision-making and risk management.
Whether you're a seasoned investor seeking historical insights or an analyst exploring market trends, this dataset serves as a valuable resource for studying the complexities of the stock market across different eras.
Facebook
TwitterThe total market capitalization of all companies trading on the London Stock Exchange (LSE) took a large hit during the early months of 2020, due mostly part to a mass sell-off of shares caused by the fears surrounding the global coronavirus (COVID-19) pandemic. Between December 2019 and March 2020, the total value of market capitalization decreased by more than *** billion British pounds (GBP). The overall number of companies currently trading has also been falling. The number of daily trades spiked in March 2020 and then decreased as well. As of February 2025, the total market value of all companies trading on the London Stock Exchange stood at over **** trillion British pounds. European stock exchanges While almost every country has a stock Exchange, in Europe only five exchanges are considered major, with total market capital amounting to over *** trillion euros. The London Stock Exchange is the second largest in Europe and tenth largest worldwide. As of January 2025, Europe’s largest stock exchange, Euronext had a total market capital of listed companies valued at approximately **** trillion U.S. dollars.
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aimia reported CAD272.9M in Market Capitalization this December of 2025, considering the latest stock price and the number of outstanding shares.Data for Aimia | AIM - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last December in 2025.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a detailed, intraday view of Amazon's stock (AMZN) price movements from May 21, 2012, to November 14, 2012. Meticulously compiled, it offers a granular perspective on market dynamics, enabling robust quantitative analysis and modeling.
The dataset encompasses the following key financial metrics for each trading day:
This dataset is tailored for sophisticated financial analysis, model development, and academic research. Potential applications include:
Contect info:
You can contect me for more data sets if you want any type of data to scrape
-X
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterThe price of Meta (former Facebook) shares traded on the Nasdaq stock exchange fluctuated significantly but increased overall during the period from May 2012 to January 2025. After peaking at ****** U.S. dollars per share in August 2021, the price of Meta shares started to fluctuate and exceeded its previous peak in 2025. The share price stood at ****** U.S. dollars as of the end of January 2025. Substantial fluctuations in the last few years Meta's stock prices have fluctuated particularly after the rebranding announcement in late 2021. Following the announcement and through 2022, Meta's revenue remained rather stagnant, and its net income decreased considerably. Moreover, the tech giant announced one of the industry's largest layoffs in late 2022. As a result, the share price hit a low of ***** U.S. dollars in October 2022, the lowest value observed since 2016. However, Meta's share price has been steadily recovering since then. Shift in strategy for the world’s first social network Meta has shifted its focus to the metaverse, virtual reality (VR), and augmented reality (AR), with the rebranding in late 2021. As a result, Reality Labs was established as a dedicated business and research unit to focus on developing metaverse and AR/VR technologies. However, as of early 2023, Meta still relies mainly on advertising and its Family of Apps to generate most of its revenue, despite having made significant investments in virtual reality. Reality Labs generated *** billion U.S. dollars in revenue in 2024 and has been consistently incurring operating losses since 2019.
Facebook
TwitterIn 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Facebook
TwitterThe price of Alphabet A shares traded on the Nasdaq stock exchange increased continuously during the period between January 2010 and October 2021. Since then, the price of Alphabet A share fluctuated significantly and amounted to ****** U.S. dollars as of the end of January 2025. This was the highest value reached during this period.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
All data acquired on December 11th 2023
1) Ticker: Stock symbol identifying the company.
2) Company: Name of the company.
3) Sector: Industry category to which the company belongs.
4) Industry: Specific sector or business category of the company.
5) Country: Country where the company is based.
6) Market Cap: Total market value of a company's outstanding shares.
7) Price: Current stock price.
8) Change (%): Percentage change in stock price.
9) Volume: Number of shares traded.
10) Price to Earnings Ratio: Ratio of stock price to earnings per share.
11) Price to Earnings: Price-to-earnings ratio based on past earnings.
12) Forward Price to Earnings: Expected price-to-earnings ratio.
13) Price/Earnings to Growth: Ratio of P/E to earnings growth.
14) Price to Sales: Ratio of stock price to annual sales.
15) Price to Book: Ratio of stock price to book value.
16) Price to Cash: Ratio of stock price to cash per share.
17) Price to Free Cash Flow: Ratio of stock price to free cash flow.
18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.
19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.
20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.
21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.
22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.
23) Dividend (%): Dividend yield as a percentage of the stock price.
24) Return on Assets (%): Percentage return on total assets.
25) Return on Equity (%): Percentage return on shareholder equity.
26) Return on Investment (%): Percentage return on total investment.
27) Current Ratio: Ratio of current assets to current liabilities.
28) Quick Ratio: Ratio of liquid assets to current liabilities.
29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.
30) Debt to Equity: Ratio of total debt to shareholder equity.
31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.
32) Operating Margin (%): Percentage of operating income to revenue.
33) Profit Margin: Percentage of net income to revenue.
34) Earnings: Net income of the company.
35) Outstanding Shares: Total number of shares issued by the company.
36) Float: Tradable shares available to the public.
37) Insider Ownership (%): Percentage of company owned by insiders.
38) Insider Transactions: Recent insider buying or selling activity.
39) Institutional Ownership (%): Percentage of company owned by institutional investors.
40) Float Short (%): Percentage of tradable shares sold short by investors.
41) Short Ratio: Number of days it would take to cover short positions.
42) Average Volume: Average number of shares traded daily.
43) Performance (Week) (%): Weekly stock performance percentage.
44) Performance (Month) (%): Monthly stock performance percentage.
45) Performance (Quarter) (%): Quarterly stock performance percentage.
46) Performance (Half Year) (%): Semi-annual stock performance percentage.
47) Performance (Year) (%): Annual stock performance percentage.
48) Performance (Year to Date) (%): Year-to-date stock performance percentage.
49) Volatility (Week) (%): Weekly stock price volatility percentage.
50) Volatility (Month) (%): Monthly stock price volatility percentage.
51) Analyst Recommendation: Analyst consensus recommendation on the stock.
52) Relative Volume: Volume compared to the average volume.
53) Beta: Measure of stock price volatility relative to the market.
54) Average True Range: Average price range of a stock.
55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.
56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.
57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.
58) Yearly High (%): Percentage difference from the yearly high stock price.
59) Yearly Low (%): Percentage difference from the yearly low stock price.
60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.
61) Change from Open (%): Percentage change from the opening stock price.
62) Gap (%): Percentage difference between the previous close and the current open price.
63) Volume: Total number of shares traded.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
London Stock Exchange stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This project involves collecting and analyzing financial data for Electronic Arts (EA) using the Alpha Vantage API. The data includes historical stock prices, dividend payments, and stock splits. The project aims to provide a detailed view of EA’s financial performance and corporate actions over time.
1) Stock Price Data: Daily records of EA’s stock prices, including opening, high, low, and closing prices, as well as trading volume.
2) Dividend Data: Historical records of dividend payments by EA, detailing declaration dates, record dates, payment dates, and dividend amounts.
3) Stock Split Data: Records of stock split events, showing the date of each split and the split ratio.
The data is sourced from the Alpha Vantage API, which provides comprehensive financial market data. The datasets are cleaned and formatted to ensure consistency and accuracy. They are then saved in CSV files for easy access and analysis.
Stock Price Analysis: Evaluate EA’s stock price trends, volatility, and trading volumes over time.
Dividend Analysis: Analyze dividend payment trends, yield, and changes in dividend policy.
Stock Split Analysis: Understand the impact of stock splits on EA’s stock price and overall market behavior.
This data can be used by investors, financial analysts, and researchers to make informed decisions or conduct further financial research. It can also be integrated into financial models or visualizations to provide a clearer picture of EA’s financial health and corporate actions.
The project provides a detailed dataset of Electronic Arts’ financial data, including stock prices, dividends, and stock splits. By sourcing data from the Alpha Vantage API and carefully formatting it, the project offers valuable insights into EA’s historical financial performance. The data is organized into CSV files, making it accessible for analysis, research, and decision-making purposes.
Facebook
TwitterThe FTSE All-Share Index shed around ** percent of its value between January and March 2020, largely due to the coronavirus (COVID-19) pandemic. Then, it recovered to reach ******** points at the end of June 2021 - the third-highest value over the period surveyed and well above its value of *** points in January 2020. Since the beginning of 2022, however, the Index dropped again under 1,000 points. As of February 2025, it was recorded at ****** points.The FTSE AIM All-Share Index contains all companies listed in the Alternative Investment Market (AIM) of the London Stock Exchange (LSE). AIM offers a more flexible regulatory system, catering for companies that are smaller, less-developed or which want/need a more flexibility around governance.