Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a points dataset of the locations of current and past air monitoring sites managed within the EPA's National Ambient Air Quality Network.
Dataset contains information on New York City air quality surveillance data. Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.
This United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Air quality data is collected from the Allegheny County Health Department monitors throughout the county. This data must be verified by qualified individuals before it can be considered official. The following data is unverified. This means that any electrical disruption or equipment malfunction can report erroneous monitored data.
For more information about the Health Department's Air Quality Program or to view a live version of the dashboard, please visit the ACHD website: https://alleghenycounty.us/Health-Department/Programs/Air-Quality/Air-Quality.aspx
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
Find data on air quality in Massachusetts. This dataset provides estimates of air pollution concentrations for fine air particles (PM2.5) and ozone. These measures are available for each year for each community within Massachusetts.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This indicator shows how many days per year were assessed to have air quality that was worse than “moderate” in Champaign County, according to the U.S. Environmental Protection Agency’s (U.S. EPA) Air Quality Index Reports. The period of analysis is 1980-2024, and the U.S. EPA’s air quality ratings analyzed here are as follows, from best to worst: “good,” “moderate,” “unhealthy for sensitive groups,” “unhealthy,” “very unhealthy,” and "hazardous."[1]
In 2024, the number of days rated to have air quality worse than moderate was 0. This is a significant decrease from the 13 days in 2023 in the same category, the highest in the 21st century. That figure is likely due to the air pollution created by the unprecedented Canadian wildfire smoke in Summer 2023.
While there has been no consistent year-to-year trend in the number of days per year rated to have air quality worse than moderate, the number of days in peak years had decreased from 2000 through 2022. Where peak years before 2000 had between one and two dozen days with air quality worse than moderate (e.g., 1983, 18 days; 1988, 23 days; 1994, 17 days; 1999, 24 days), the year with the greatest number of days with air quality worse than moderate from 2000-2022 was 2002, with 10 days. There were several years between 2006 and 2022 that had no days with air quality worse than moderate.
This data is sourced from the U.S. EPA’s Air Quality Index Reports. The reports are released annually, and our period of analysis is 1980-2024. The Air Quality Index Report websites does caution that "[a]ir pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area," and recommends that data users do not compare air quality between different locations[2].
[1] Environmental Protection Agency. (1980-2024). Air Quality Index Reports. (Accessed 13 June 2025).
[2] Ibid.
Source: Environmental Protection Agency. (1980-2024). Air Quality Index Reports. https://www.epa.gov/outdoor-air-quality-data/air-quality-index-report. (Accessed 13 June 2025).
Air quality monitoring sites measure for criteria air pollutants and other public health-related contaminants. An Air Quality Index meter shows general air quality. Not all sites provide the same data.Service layer is updated as needed and was last updated August 2022.For more information see https://www.dec.ny.gov/chemical/8406.html1. The NYSDEC asks to be credited in derived products. 2. Secondary distribution of the data is not allowed. 3. Any documentation provided is an integral part of the data set. Failure to use the documentation in conjunction with the digital data constitutes a misuse of the data. 4. Although every effort has been made to ensure the accuracy of information, errors may be reflected in data supplied. The user must be aware of data conditions and bear responsibility for the appropriate use of the information with respect to possible errors, original map scale, collection methodology, currency of data, and other condition.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The National Air Pollution Surveillance (NAPS) program is the main source of ambient air quality data in Canada. The NAPS program, which began in 1969, is now comprised of nearly 260 stations in 150 rural and urban communities reporting to the Canada-Wide Air Quality Database (CWAQD). Managed by Environment and Climate Change Canada (ECCC) in collaboration with provincial, territorial, and regional government networks, the NAPS program forms an integral component of various diverse initiatives; including the Air Quality Health Index (AQHI), Canadian Environmental Sustainability Indicators (CESI), and the US-Canada Air Quality Agreement. Once per year, typically autumn, the Continuous data set for the previous year is reported on ECCC Data Mart. Beginning in March of 2020 the impact of the COVID-19 pandemic on NAPS Operations has resulted in reduced data availability for some sites and parameters. For additional information on NAPS data products contact the NAPS inquiry centre at RNSPA-NAPSINFO@ec.gc.ca Last updated March 2023. Supplemental Information Monitoring Program Overview The NAPS program is comprised of both continuous and (time-) integrated measurements of key air pollutants. Continuous data are collected using gas and particulate monitors, with data reported every hour of the year, and are available as hourly concentrations or annual averages. Integrated samples, collected at select sites, are analyzed at the NAPS laboratory in Ottawa for additional pollutants, and are typically collected for a 24 hour period once every six days, on various sampling media such as filters, canisters, and cartridges. Continuous Monitoring Air pollutants monitored continuously include the following chemical species: • carbon monoxide (CO) • nitrogen dioxide (NO2) • nitric oxide (NO) • nitrogen oxides (NOX) • ozone (O3) • sulphur dioxide (SO2) • particulate matter less than or equal to 2.5 (PM2.5) and 10 micrometres (PM10) Each provincial, territorial, and regional government monitoring network is responsible for collecting continuous data within their jurisdiction and ensuring that the data are quality-assured as specified in the Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines. The hourly air pollutant concentrations are reported as hour-ending averages in local standard time with no adjustment for daylight savings time. These datasets are posted on an annual basis. Integrated Monitoring Categories of chemical species sampled on a time-integrated basis include: • fine (PM2.5) and coarse (PM10-2.5) particulate composition (e.g., metals, ions), and additional detailed chemistry provided through a subset of sites by the NAPS PM2.5 speciation program; • semi-volatile organic compounds (e.g., polycyclic aromatic hydrocarbons such as benzo[a]pyrene); • volatile organic compounds (e. g., benzene) The 24-hour air pollutant samples are collected from midnight to midnight. These datasets are generally posted on a quarterly basis. Data Disclaimer NAPS data products are subject to change on an ongoing basis, and reflect the most up-to-date and accurate information available. New versions of files will replace older ones, while retaining the same location and filename. The ‘Data-Donnees’ directory contains continuous and integrated data sorted by sampling year and then measurement. Pollutants measured, sampling duration and sampling frequency may vary by site location. Additional program details can be found at ‘ProgramInformation-InformationProgramme’ also in the data resources section. Citations National Air Pollution Surveillance Program, (year accessed). Available from the Government of Canada Open Data Portal at open.canada.ca.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual hourly air quality and meteorological data by pollutant for the 2021 calendar year. For more information on air quality, including live air data, please visit www.qld.gov.au/environment/pollution/monitoring/air.
Data resolution: One-hour average values
Data row timestamp: Start of averaging period
Missing data/not monitored: Blank cell
Sampling height: Four metres above ground (unless otherwise indicated)
This layer includes contains air quality and meteorologic measurements from air monitoring stations in Michigan that is sourced from AirNow. This dataset contains only the most recent recorded values. Note that this data is preliminary and is subject to validation and changes.
Field Name
Alias
Description
OBJECTID
N/A
N/A
StationID
Station ID
The station ID assigned by EGLE
StationName
Station Name
Station name of the air monitoring station. StationType
Station TypeThe type of air monitoring station. The value 'Permanent' indicates the station is a fixed, long-term installation.
StationStatus
Station Status
Activity status of the station.
LastObservation
Last Observation
Date and time of the most recent recorded observation.
shape
shape
ESRI geometry field.
WD_DEGREES
Wind Direction
Wind direction for current observation expressed in degrees.
WS_MS
Wind Speed
Wind speed measured in meters per second.
TEMP_CTemperatureTemperature measure in degrees Celsius.
PM25_UGM3
PM 2.5
Concentration of particulate matter ≤ 2.5 micrometers (PM2.5) measured in micrograms per cubic meter (µg/m³).
OZONE_PPBOzone
Concentration of ozone (O3) measured in parts per billion (ppb).
NO2_PPB
NO2
Concentration of nitrogen dioxide (NO₂) measured in parts per billion (ppb).
SO2_PPB
SO2Concentration of sulfur dioxide (SO₂) measured in parts per billion (ppb).
CO_PPM
CO
Concentration of carbon monoxide (CO) measured in parts per million (ppm).
NO_PPB
NOConcentration of nitrogen monoxide (NO) measured in parts per billion (ppb).
PM10_UGM3
PM 10
Concentration of particulate matter ≤ 10 micrometers (PM10) measured in micrograms per cubic meter (µg/m³). NOX_PPB
NOxConcentration of nitrogen oxides (NOx) measured in parts per billion (ppb).RWD_DEGREESResultant Wind Direction The average wind direction expressed in degrees. NOY_PPB
NOy
Concentration of total reactive nitrogen (NOy) measured in parts per billion (ppb). RWS_KNOTS
Resultant Wind Speed
The average wind speed measured in knots.
If you have questions related to air quality, please reach out to Susan Kilmer (KilmerS@Michigan.gov or 517-242-2655). If you have map suggestions or functionality issues, please reach out to EGLE-Maps@Michigan.gov.From EPA AirNow:Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here. Visit Michigan.gov/EGLE for more information about air monitoring in Michigan.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Air Quality Monitor Market Size 2025-2029
The air quality monitor market size is forecast to increase by USD 2.29 billion at a CAGR of 7.1% between 2024 and 2029.
The market is experiencing significant growth due to the increasing awareness and necessity of monitoring indoor air quality in both residential and commercial sectors. This trend is further fueled by the rising adoption of green buildings, which prioritize energy efficiency and occupant health. However, the high cost of deploying air quality monitoring devices remains a significant challenge for market expansion. Despite this obstacle, companies can capitalize on the growing demand for indoor air quality solutions by offering cost-effective and efficient monitoring technologies. Additionally, partnerships with real estate developers and building management companies can provide lucrative opportunities for market growth. Overall, the market presents a promising landscape for companies seeking to address the growing need for indoor air quality monitoring while navigating the challenge of affordability.
What will be the Size of the Air Quality Monitor Market during the forecast period?
Request Free SampleThe market continues to evolve, driven by growing health concerns and the need for real-time, data-driven solutions. Ambient air quality plays a significant role in public health, with health risks associated with air pollution levels. Remote monitoring through cloud-based platforms enables air quality management, allowing for proactive responses to changing conditions. Infrared sensors and machine learning algorithms are used for particle matter detection, while ultrasonic sensors measure sound levels. Energy efficiency is a key consideration, with sensor fusion and data analysis techniques improving sensor reliability and accuracy. Air filtration systems, nitrogen dioxide sensors, and mobile apps are integral components of air quality management. Laser particle counters and mass spectrometry are used for industrial emissions monitoring. Multi-sensor systems and predictive analytics enable compliance reporting and data visualization. Carbon monoxide, sulfur dioxide, and volatile organic compounds are among the gases monitored. The integration of artificial intelligence and smart cities enhances air quality management, with real-time monitoring and API integration facilitating building management and pollution control. Public awareness campaigns and occupancy monitoring further optimize ventilation systems. Regulatory standards continue to evolve, driving innovation in sensor technology and data analysis techniques. Overall, the market is a dynamic and evolving landscape, with ongoing advancements in sensor technology, data analysis, and regulatory standards shaping its future.
How is this Air Quality Monitor Industry segmented?
The air quality monitor industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductIndoorOutdoorWearableEnd-userGovernmentCommercial and residentialEnergy and pharmaceuticalsOthersTypeChemical pollutantsPhysical pollutantsBiological pollutantsComponentHardwareSoftwareServicesGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth KoreaRest of World (ROW)
By Product Insights
The indoor segment is estimated to witness significant growth during the forecast period.Indoor air quality monitors are essential devices for assessing and maintaining healthy and comfortable environments within homes, offices, schools, hospitals, and other buildings. These monitors employ sensors and detectors to measure various parameters, such as temperature, humidity, carbon dioxide (CO2) levels, volatile organic compounds (VOCs), and particulate matter (PM), to evaluate indoor air quality. Real-time data and insights are provided through continuous monitoring, enabling building managers and occupants to address potential issues promptly. Advancements in technology have led to the integration of remote monitoring, cloud-based platforms, and the Internet of Things (IoT) in indoor air quality management. These innovations facilitate real-time data analysis, predictive analytics, and compliance reporting. Sensor fusion, machine learning, and artificial intelligence are employed to enhance sensor reliability and accuracy, ensuring precise measurements. Indoor air quality is crucial for public health, as poor indoor air quality can lead to various health risks, including respiratory issues, headaches, and fatigue. Regulatory standards mandate specific air quality index (AQI) thresholds for various pollutants, making it essential for building managers to maintain optimal indoor air quality. Indoor air quality monitors utilize various sensors, including infrared, ultrasonic, electrochemical, metal oxide
This layer shows Air Quality Index Now stations owned by the New Mexico Environment Department along with the most recent hourly value gathered for numerous gases, particulate matter, and other characteristics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "World Air Quality Data 2024 (Updated)" dataset provides a comprehensive overview of air quality measurements from various locations around the globe. It encompasses over 50,000 records, each detailing critical air quality parameters that are pivotal for environmental analysis, health studies, and policy-making.
This extensive dataset captures a wide array of pollutants, including but not limited to PM2.5, NO2, SO2, CO, and O3, offering insights into the atmospheric conditions of cities worldwide. With data points dating up to March 2024, it serves as a crucial resource for understanding the current state and trends in global air quality.
Each record in the dataset includes detailed information structured across several columns: Country Code, City, Location, Coordinates, Pollutant, Source Name, Unit, Value, Last Updated, and Country Label. These descriptors provide a clear understanding of the measurement context, allowing for nuanced analysis and interpretation.
The data has been ethically sourced from OpenDataSoft, a platform dedicated to making publicly available data accessible and usable. You can explore the dataset further at OpenDataSoft's Air Quality Dataset.
We extend our deepest gratitude to OpenDataSoft for facilitating access to this dataset, enabling a broader understanding of air quality issues. Their platform plays a pivotal role in democratizing data access, thereby empowering researchers, policymakers, and the public to make informed decisions towards a healthier planet.
The Environmental Protection Agency (EPA) provides air pollution data about ozone and particulate matter (PM2.5) to CDC for the Tracking Network. The EPA maintains a database called the Air Quality System (AQS) which contains data from approximately 4,000 monitoring stations around the country, mainly in urban areas. Data from the AQS is considered the "gold standard" for determining outdoor air pollution. However, AQS data are limited because the monitoring stations are usually in urban areas or cities and because they only take air samples for some air pollutants every three days or during times of the year when air pollution is very high. CDC and EPA have worked together to develop a statistical model (Downscaler) to make modeled predictions available for environmental public health tracking purposes in areas of the country that do not have monitors and to fill in the time gaps when monitors may not be recording data. This data does not include "Percent of population in counties exceeding NAAQS (vs. population in counties that either meet the standard or do not monitor PM2.5)". Please visit the Tracking homepage for this information.View additional information for indicator definitions and documentation by selecting Content Area "Air Quality" and the respective indicator at the following website: http://ephtracking.cdc.gov/showIndicatorsData.action
This publication summarises the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN). This release covers annual average concentrations in the UK of:
The release also covers the number of days when air pollution was ‘Moderate’ or higher for any one of five pollutants listed below:
These statistics are used to monitor progress against the UK’s reduction targets for concentrations of air pollutants. Improvements in air quality help reduce harm to human health and the environment.
Air quality in the UK is strongly linked to anthropogenic emissions of pollutants. For more information on UK emissions data and other information please refer to the air quality and emissions statistics GOV.UK page.
The statistics in this publication are based on data from the Automatic Urban and Rural Network (AURN) of air quality monitors. The https://uk-air.defra.gov.uk/" class="govuk-link">UK-AIR website contains the latest air quality monitoring data for the UK and detailed information about the different monintoring networks that measure air quality. The website also hosts the latest data produced using Pollution Climate Mapping (PCM) which is a suite of models that uses both monitoring and emissions data to model concentrations of air pollutants across the whole of the UK. The UK-AIR website also provides air pollution episode updates and information on Local Authority Air Quality Management Areas as well as a number of useful reports.
The monitoring data is continuously reviewed and subject to change when issues are highlighted. This means that the time series for certain statistics may vary slightly from year to year. You can access editions of this publication via The National Archives or the links below.
The datasets associated with this publication can be found here ENV02 - Air quality statistics.
As part of our ongoing commitment to compliance with the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Official Statistics we wish to strengthen our engagement with users of air quality data and better understand how the data is used and the types of decisions that they inform. We invite users to https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">register as a “user of Air Quality data”, so that we can retain your details, inform you of any new releases of Air Quality statistics and provide you with the opportunity to take part in user engagement activities that we may run. If you would like to register as a user of Air Quality data, please provide your details in the attached https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">form.
https://webarchive.nationalarchives.gov.uk/ukgwa/20250609165125/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2023
https://webarchive.nationalarchives.gov.uk/ukgwa/20230802031254/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2022
https://webarchive.nationalarchives.gov.uk/ukgwa/20230301015627/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2021
https://webarchive.nationalarchives.gov.uk/ukgwa/20211111164715/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2020
https://webarchive.nationalarchives.gov.uk/20201225100256/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2019
<a rel="external" href="https://webarchive.nationalarchives.gov.uk/20200303
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Air Quality Monitoring Market Report is Segmented by Product Type (Indoor Monitor and Outdoor Monitor), Sampling Method (Continuous and More), Component (Hardware and More), Technology (Gas Analysers and More), Pollutant Parameter (Particulate Pollutants and More), Deployment Mode (Fixed Monitoring Stations and More), End-User Industry (Residential and Commercial Buildings and More), and Geography (Asia-Pacific and More).
https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy
The air quality monitoring equipment market is expected to grow extensively with the industry size, estimated to reach USD 7.6 billion in 2025, slated to be about USD 15.3 billion by the year 2035 at a growth rate of 7.3% CAGR. Growth in the industry comes on account of growing air pollution awareness, concerns regarding public health, and stiffening environmental legislation.
Metrics | Values |
---|---|
Industry Size (2025E) | USD 7.6 billion |
Industry Value (2035F) | USD 15.3 billion |
CAGR (2025 to 2035) | 7.3% |
Country-Wise Analysis
Countries | CAGR (2025 to 2035) |
---|---|
USA | 7.3% |
UK | 7.1% |
France | 7.2% |
Germany | 7.4% |
Italy | 7.1% |
South Korea | 7.5% |
Japan | 7.3% |
China | 7.7% |
Australia | 7.2% |
New Zealand | 7.1% |
Competitive Outlook
Company Name | Market Share (%) |
---|---|
Honeywell | 18-23% |
Thermo Fisher Scientific | 15-20% |
Vaisala | 10-15% |
ENVEA Group | 8-12% |
TSI Incorporated | 5-9% |
Others (combined) | 30-40% |
Part of What Works Cities Certification is reporting our city's annual average concentration of PM2.5 (fine particular matter) does not exceed 10 milligrams per cubic meter.The information is sensor data from the Triple Oak Site (Site Number 0021) and Millbrook School (Site Number 0014).Please look to the Dataset Schema section below for descriptions of columns and data types. US Environmental Protection Agency. Air Data App Map [internet database] available at https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors. Accessed January 10, 2023. US Environmental Protection Agency. Air Quality System Data Mart [internet database] available at http://www.epa.gov/ttn/airs/aqsdatamart. Accessed January 10, 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indoor air pollutant concentration data is collected for all the seasons in Pune city, India, from internet of things-based system built using low-cost sensors. The raw data contains 1,73,468 records collected from Nov 2020 to July 2022. Air pollutant PM2.5 (Particulate Matter) is measured using GP2Y1010AU0F Dust Smoke Particle Sensor, NO2 (Nitrogen Dioxide), NH3 (Ammonia) and CO (Carbon Monoxide) pollutant measured using MICS-6814 sensor. Ozone (O3) measured using MQ131 Semiconductor Sensor. Temperature, Humidity measured using BME 280 sensor. Measurement units of NH3 is PPM, NO2 in PPM, CO in PPM, PM2.5 in ug/m3, Temperature in Celsius, Pressure in hPa, Humidity in RH, Ozone in PPB. This data can be used for study and evaluations of prediction models, low-cost sensor data and calibration. It can be used for the study of the pollutant’s patterns in COVID-19 pandemic. It will help policymakers to develop policies to monitor air pollution impact.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Asia Pacific Air Quality Monitoring Market size was valued at USD 77.40 Million in 2023 and is projected to reach USD 105.68 Million by 2032, exhibiting a CAGR of 4.55 % during the forecasts periods. Air quality monitoring is the systematic process of measuring and assessing the concentration of pollutants in the air to ensure it meets established health and environmental standards. This process involves the use of various sensors and instruments to detect pollutants such as particulate matter (PM2.5 and PM10), ground-level ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. These pollutants can originate from various sources, including vehicle emissions, industrial activities, and natural events like wildfires and dust storms. Air quality monitoring can be conducted at different levels, from local to global scales. Local monitoring networks provide detailed information about air quality in specific areas, while satellite-based monitoring offers a broader view of regional and global air quality trends. The collected data is often used to calculate the Air Quality Index (AQI), a standardized indicator that communicates the level of air pollution and its potential health impacts to the public. Recent developments include: Januaru 2023: The government of India launched the Technology for Air Quality Monitoring System (AI-AQMS v1.0) developed under MeitY-supported projects. The Centre for Development of Advanced Computing (C-DAC), Kolkata, in partnership with TeXMIN, ISM, Dhanbad under the ‘National program on Electronics and ICT applications in Agriculture and Environment (AgriEnIcs)’ has developed an outdoor air quality monitoring station to monitor environmental pollutants which includes parameters like PM 1.0, PM 2.5, PM 10.0, SO2, NO2, CO, O2, ambient temperature, relative humidity etc., for continuous air quality analysis of the environment., September 2022: The Asian Development Bank (ADB) launched the Asia Clean Blue Skies Program (ACBSP) to scale up ADB's investments in improving air quality in Asia and the Pacific. ADB launched the ACBSP at the Fourth Asia Pacific Clean Air Partnership joint forum in Seoul, Korea. The program supports the development and strengthening of policies and plans for ADB's developing member countries (DMCs) so that investments are stimulated in air quality projects, such as greenhouse gas reductions in energy, agriculture, transportation, industrial development, and urban development.. Key drivers for this market are: 4., Increasing Awareness and Favorable Government Policies and Non-government Initiatives for Curbing Air Pollution. Potential restraints include: 4., High Costs of Air Quality Monitoring Systems. Notable trends are: Outdoor Segment to Witness Significant Growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a points dataset of the locations of current and past air monitoring sites managed within the EPA's National Ambient Air Quality Network.