100+ datasets found
  1. Air Quality Measures on the National Environmental Health Tracking Network

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Air Quality Measures on the National Environmental Health Tracking Network [Dataset]. https://catalog.data.gov/dataset/air-quality-measures-on-the-national-environmental-health-tracking-network
    Explore at:
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Environmental Protection Agency (EPA) provides air pollution data about ozone and particulate matter (PM2.5) to CDC for the Tracking Network. The EPA maintains a database called the Air Quality System (AQS) which contains data from approximately 4,000 monitoring stations around the country, mainly in urban areas. Data from the AQS is considered the "gold standard" for determining outdoor air pollution. However, AQS data are limited because the monitoring stations are usually in urban areas or cities and because they only take air samples for some air pollutants every three days or during times of the year when air pollution is very high. CDC and EPA have worked together to develop a statistical model (Downscaler) to make modeled predictions available for environmental public health tracking purposes in areas of the country that do not have monitors and to fill in the time gaps when monitors may not be recording data. This data does not include "Percent of population in counties exceeding NAAQS (vs. population in counties that either meet the standard or do not monitor PM2.5)". Please visit the Tracking homepage for this information.View additional information for indicator definitions and documentation by selecting Content Area "Air Quality" and the respective indicator at the following website: http://ephtracking.cdc.gov/showIndicatorsData.action

  2. National Air Pollution Surveillance (NAPS) Program

    • ouvert.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2023). National Air Pollution Surveillance (NAPS) Program [Dataset]. https://ouvert.canada.ca/data/dataset/1b36a356-defd-4813-acea-47bc3abd859b
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The National Air Pollution Surveillance (NAPS) program is the main source of ambient air quality data in Canada. The NAPS program, which began in 1969, is now comprised of nearly 260 stations in 150 rural and urban communities reporting to the Canada-Wide Air Quality Database (CWAQD). Managed by Environment and Climate Change Canada (ECCC) in collaboration with provincial, territorial, and regional government networks, the NAPS program forms an integral component of various diverse initiatives; including the Air Quality Health Index (AQHI), Canadian Environmental Sustainability Indicators (CESI), and the US-Canada Air Quality Agreement. Once per year, typically autumn, the Continuous data set for the previous year is reported on ECCC Data Mart. Beginning in March of 2020 the impact of the COVID-19 pandemic on NAPS Operations has resulted in reduced data availability for some sites and parameters. For additional information on NAPS data products contact the NAPS inquiry centre at RNSPA-NAPSINFO@ec.gc.ca Last updated March 2023. Supplemental Information Monitoring Program Overview The NAPS program is comprised of both continuous and (time-) integrated measurements of key air pollutants. Continuous data are collected using gas and particulate monitors, with data reported every hour of the year, and are available as hourly concentrations or annual averages. Integrated samples, collected at select sites, are analyzed at the NAPS laboratory in Ottawa for additional pollutants, and are typically collected for a 24 hour period once every six days, on various sampling media such as filters, canisters, and cartridges. Continuous Monitoring Air pollutants monitored continuously include the following chemical species: • carbon monoxide (CO) • nitrogen dioxide (NO2) • nitric oxide (NO) • nitrogen oxides (NOX) • ozone (O3) • sulphur dioxide (SO2) • particulate matter less than or equal to 2.5 (PM2.5) and 10 micrometres (PM10) Each provincial, territorial, and regional government monitoring network is responsible for collecting continuous data within their jurisdiction and ensuring that the data are quality-assured as specified in the Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines. The hourly air pollutant concentrations are reported as hour-ending averages in local standard time with no adjustment for daylight savings time. These datasets are posted on an annual basis. Integrated Monitoring Categories of chemical species sampled on a time-integrated basis include: • fine (PM2.5) and coarse (PM10-2.5) particulate composition (e.g., metals, ions), and additional detailed chemistry provided through a subset of sites by the NAPS PM2.5 speciation program; • semi-volatile organic compounds (e.g., polycyclic aromatic hydrocarbons such as benzo[a]pyrene); • volatile organic compounds (e. g., benzene) The 24-hour air pollutant samples are collected from midnight to midnight. These datasets are generally posted on a quarterly basis. Data Disclaimer NAPS data products are subject to change on an ongoing basis, and reflect the most up-to-date and accurate information available. New versions of files will replace older ones, while retaining the same location and filename. The ‘Data-Donnees’ directory contains continuous and integrated data sorted by sampling year and then measurement. Pollutants measured, sampling duration and sampling frequency may vary by site location. Additional program details can be found at ‘ProgramInformation-InformationProgramme’ also in the data resources section. Citations National Air Pollution Surveillance Program, (year accessed). Available from the Government of Canada Open Data Portal at open.canada.ca.

  3. d

    Air Quality

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Apr 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Air Quality [Dataset]. https://catalog.data.gov/dataset/air-quality
    Explore at:
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Dataset contains information on New York City air quality surveillance data. Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.

  4. Historical Air Quality

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Environmental Protection Agency (2019). Historical Air Quality [Dataset]. https://www.kaggle.com/datasets/epa/epa-historical-air-quality
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    US Environmental Protection Agency
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The AQS Data Mart is a database containing all of the information from AQS. It has every measured value the EPA has collected via the national ambient air monitoring program. It also includes the associated aggregate values calculated by EPA (8-hour, daily, annual, etc.). The AQS Data Mart is a copy of AQS made once per week and made accessible to the public through web-based applications. The intended users of the Data Mart are air quality data analysts in the regulatory, academic, and health research communities. It is intended for those who need to download large volumes of detailed technical data stored at EPA and does not provide any interactive analytical tools. It serves as the back-end database for several Agency interactive tools that could not fully function without it: AirData, AirCompare, The Remote Sensing Information Gateway, the Map Monitoring Sites KML page, etc.

    AQS must maintain constant readiness to accept data and meet high data integrity requirements, thus is limited in the number of users and queries to which it can respond. The Data Mart, as a read only copy, can allow wider access.

    The most commonly requested aggregation levels of data (and key metrics in each) are:

    Sample Values (2.4 billion values back as far as 1957, national consistency begins in 1980, data for 500 substances routinely collected) The sample value converted to standard units of measure (generally 1-hour averages as reported to EPA, sometimes 24-hour averages) Local Standard Time (LST) and GMT timestamps Measurement method Measurement uncertainty, where known Any exceptional events affecting the data NAAQS Averages NAAQS average values (8-hour averages for ozone and CO, 24-hour averages for PM2.5) Daily Summary Values (each monitor has the following calculated each day) Observation count Observation per cent (of expected observations) Arithmetic mean of observations Max observation and time of max AQI (air quality index) where applicable Number of observations > Standard where applicable Annual Summary Values (each monitor has the following calculated each year) Observation count and per cent Valid days Required observation count Null observation count Exceptional values count Arithmetic Mean and Standard Deviation 1st - 4th maximum (highest) observations Percentiles (99, 98, 95, 90, 75, 50) Number of observations > Standard Site and Monitor Information FIPS State Code (the first 5 items on this list make up the AQS Monitor Identifier) FIPS County Code Site Number (unique within the county) Parameter Code (what is measured) POC (Parameter Occurrence Code) to distinguish from different samplers at the same site Latitude Longitude Measurement method information Owner / operator / data-submitter information Monitoring Network to which the monitor belongs Exemptions from regulatory requirements Operational dates City and CBSA where the monitor is located Quality Assurance Information Various data fields related to the 19 different QA assessments possible

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.epa_historical_air_quality.[TABLENAME]. Fork this kernel to get started.

    Acknowledgements

    Data provided by the US Environmental Protection Agency Air Quality System Data Mart.

  5. U

    United States AQI: Alaska: Anchorage: SO2

    • ceicdata.com
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States AQI: Alaska: Anchorage: SO2 [Dataset]. https://www.ceicdata.com/en/united-states/air-quality-index-and-air-pollutants
    Explore at:
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 24, 1984 - Dec 5, 1984
    Area covered
    United States
    Description

    AQI: Alaska: Anchorage: SO2 data was reported at 0.000 Index in 05 Dec 1984. This stayed constant from the previous number of 0.000 Index for 04 Dec 1984. AQI: Alaska: Anchorage: SO2 data is updated daily, averaging 0.000 Index from Dec 1980 (Median) to 05 Dec 1984, with 881 observations. The data reached an all-time high of 41.000 Index in 07 Aug 1984 and a record low of 0.000 Index in 05 Dec 1984. AQI: Alaska: Anchorage: SO2 data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E001: Air Quality Index and Air Pollutants.

  6. O

    Particulate Matter data from ACT Air Quality Monitoring Stations

    • data.act.gov.au
    application/rdfxml +5
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACT Health Directorate (2025). Particulate Matter data from ACT Air Quality Monitoring Stations [Dataset]. https://www.data.act.gov.au/Environment/Particulate-Matter-data-from-ACT-Air-Quality-Monit/ufvu-jybu
    Explore at:
    xml, csv, application/rssxml, application/rdfxml, json, tsvAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    ACT Health Directorate
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PM10 and PM2.5 1 hour and 24 hour rolling average from air monitoring stations.

  7. ENV02 - Air quality statistics

    • gov.uk
    Updated Apr 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2024). ENV02 - Air quality statistics [Dataset]. https://www.gov.uk/government/statistical-data-sets/env02-air-quality-statistics
    Explore at:
    Dataset updated
    Apr 30, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    This data set contains data on the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN).

    If you require the data in another format please contact: AQIE.Correspondence@defra.gov.uk

    https://assets.publishing.service.gov.uk/media/66290d83b0ace32985a7e6d7/PM25_Tables_2023.ods">Particulate Matter (PM2.5) Tables

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">247 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/66290deb3b0122a378a7e60f/PM10_Tables_2023.ods">Particulate Matter (PM10) Tables

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">201 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    <div class="gem-c-attachment_deta

  8. Air Pollution Monitoring Data DCC - Dataset - data.gov.ie

    • data.gov.ie
    Updated Oct 19, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2011). Air Pollution Monitoring Data DCC - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/air-pollution-monitoring-data-dublin-city
    Explore at:
    Dataset updated
    Oct 19, 2011
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Air Quality Monitoring Data Dublin City Council measures ambient air quality in Dublin in accordance with Air Quality standards. 'This dataset contains Air Quality Monitoring Data from January to March 2011, consisting five spreadsheets taken from five air monitoring sites around Dublin City that show hourly results for the pollutants Sulphur Dioxide( SO2) , Nitrogen Dioxide (NO2), Carbon Monoxide ( CO) and Particulate Matter (PM2.5 & PM10). The regulations are set by the Clean Air for Europe Directive 2008 (2008/50); from January 1st, 2010 the directive also requires PM2.5 monitoring. There is no real time data for PM10 or PM25'Black smoke monitoring is also carried out as a form of background monitoring using the benchmark of EU Directive 80/779/EEC as a guide however this has been scaled down since the 1990s following the introduction of the coal ban.'Multi-pollutant sites are:'Winetavern Street PM10, NO2, CO, SO2'Coleraine Street- PM2.5, NO2, CO, SO2'Ballyfermot PM10, NO2, SO2'PM10 only sites include:'Phoenix Park'Rathmines'PM2.5 only:'Marino'Black Smoke:'Ringsend'Crumlin'Finglas'Cabra''Annual report published http://www.dublincity.ie/WaterWasteEnvironment/AirQualityMonitoringandNoiseControl/AirPollution/Documents/Annual_report_2009.pdf

  9. w

    Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt (2023). Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/424
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt
    Time period covered
    1999 - 2000
    Area covered
    Angola
    Description

    Abstract

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).

    Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).

    The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.

    The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.

    The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

    Geographic coverage

    The database covers the following countries: Afghanistan Albania Algeria Andorra Angola
    Antigua and Barbuda Argentina
    Armenia Australia
    Austria Azerbaijan
    Bahamas, The
    Bahrain Bangladesh
    Barbados
    Belarus Belgium Belize
    Benin
    Bhutan
    Bolivia Bosnia and Herzegovina
    Brazil
    Brunei
    Bulgaria
    Burkina Faso
    Burundi Cambodia
    Cameroon
    Canada
    Cayman Islands
    Central African Republic
    Chad
    Chile
    China
    Colombia
    Comoros Congo, Dem. Rep.
    Congo, Rep. Costa Rica
    Cote d'Ivoire
    Croatia Cuba
    Cyprus
    Czech Republic
    Denmark Dominica
    Dominican Republic
    Ecuador Egypt, Arab Rep.
    El Salvador Eritrea Estonia Ethiopia
    Faeroe Islands
    Fiji
    Finland France
    Gabon
    Gambia, The Georgia Germany Ghana
    Greece
    Grenada Guatemala
    Guinea
    Guinea-Bissau
    Guyana
    Haiti
    Honduras
    Hong Kong, China
    Hungary Iceland India
    Indonesia
    Iran, Islamic Rep.
    Iraq
    Ireland Israel
    Italy
    Jamaica Japan
    Jordan
    Kazakhstan
    Kenya
    Korea, Dem. Rep.
    Korea, Rep. Kuwait
    Kyrgyz Republic Lao PDR Latvia
    Lebanon Lesotho Liberia Liechtenstein
    Lithuania
    Luxembourg
    Macao, China
    Macedonia, FYR
    Madagascar
    Malawi
    Malaysia
    Maldives
    Mali
    Mauritania
    Mexico
    Moldova Mongolia
    Morocco Mozambique
    Myanmar Namibia Nepal
    Netherlands Netherlands Antilles
    New Caledonia
    New Zealand Nicaragua
    Niger
    Nigeria Norway
    Oman
    Pakistan
    Panama
    Papua New Guinea
    Paraguay
    Peru
    Philippines Poland
    Portugal
    Puerto Rico Qatar
    Romania Russian Federation
    Rwanda
    Sao Tome and Principe
    Saudi Arabia
    Senegal Sierra Leone
    Singapore
    Slovak Republic Slovenia
    Solomon Islands Somalia South Africa
    Spain
    Sri Lanka
    St. Kitts and Nevis St. Lucia
    St. Vincent and the Grenadines
    Sudan
    Suriname
    Swaziland
    Sweden
    Switzerland Syrian Arab Republic
    Tajikistan
    Tanzania
    Thailand
    Togo
    Trinidad and Tobago Tunisia Turkey
    Turkmenistan
    Uganda
    Ukraine United Arab Emirates
    United Kingdom
    United States
    Uruguay Uzbekistan
    Vanuatu Venezuela, RB
    Vietnam Virgin Islands (U.S.)
    Yemen, Rep. Yugoslavia, FR (Serbia/Montenegro)
    Zambia
    Zimbabwe

    Kind of data

    Observation data/ratings [obs]

    Mode of data collection

    Other [oth]

  10. o

    Air Quality Stations

    • data.ontario.ca
    • catalogue.arctic-sdi.org
    • +3more
    csv, pdf, txt, zip
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Conservation and Parks (2024). Air Quality Stations [Dataset]. https://data.ontario.ca/dataset/air-quality-stations
    Explore at:
    csv(None), pdf(None), txt(None), zip(None)Available download formats
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    Ministry of the Environment, Conservation and Parkshttp://www.ontario.ca/ministry-environment-and-climate-change
    Authors
    Environment, Conservation and Parks
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Jan 18, 2024
    Area covered
    Ontario
    Description

    The air monitoring stations measure up to 6 common pollutants like:

    • ground-level ozone
    • fine particulate matter
    • nitrogen dioxide
    • carbon monoxide
    • sulphur dioxide
    • total reduced sulphur compounds

    The Ministry of the Environment, Conservation and Parks continually monitors air quality across Ontario. We use this information to:

    • inform the public about outdoor ambient air quality through the Air Quality Index (AQI) and Smog Advisory program
    • assess Ontario's air quality and evaluate long-term trends
    • identify areas where pollutant levels are exceeded
    • identify the origins of pollutants
    • develop air policy
    • provide quantitative measurements to reduce specific pollution sources
    • determine the significance of pollutants from long-range transports and their effects
    • provide air quality researchers with data to link environmental and human health effects to air quality
  11. a

    Michigan Air Quality Monitoring Data (All)

    • gis-egle.hub.arcgis.com
    • hub.arcgis.com
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Dept. of Environment, Great Lakes, and Energy (2024). Michigan Air Quality Monitoring Data (All) [Dataset]. https://gis-egle.hub.arcgis.com/datasets/michigan-air-quality-monitoring-data-all/about
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    Michigan Dept. of Environment, Great Lakes, and Energy
    Area covered
    Description

    This layer includes contains air quality and meteorologic measurements from air monitoring stations in Michigan that is sourced from AirNow. The data begins on March 3rd, 2024 and is updated hourly. Note that this data is preliminary and is subject to validation and changes.

    Field Name

    Alias

    Description

    OBJECTID

    N/A

    N/A

    StationID

    Station ID
    

    The station ID assigned by EGLE

    StationName

    Station Name

    Station name of the air monitoring station. StationType

    Station TypeThe type of air monitoring station. The value 'Permanent' indicates the station is a fixed, long-term installation.

    StationStatus

    Station Status

    Activity status of the station.

    LastObservation

    Last Observation

    Date and time of the most recent recorded observation.

    shape

    shape

    ESRI geometry field.
    

    WD_DEGREES

    Wind Direction

    Wind direction for current observation expressed in degrees.

    WS_MS

    Wind Speed

    Wind speed measured in meters per second.

    TEMP_CTemperatureTemperature measure in degrees Celsius.

    PM25_UGM3

    PM 2.5

    Concentration of particulate matter ≤ 2.5 micrometers (PM2.5) measured in micrograms per cubic meter (µg/m³).

    OZONE_PPBOzone

    Concentration of ozone (O3) measured in parts per billion (ppb).

    NO2_PPB

    NO2

    Concentration of nitrogen dioxide (NO₂) measured in parts per billion (ppb).

    SO2_PPB

    SO2Concentration of sulfur dioxide (SO₂) measured in parts per billion (ppb).

    CO_PPM

    CO

    Concentration of carbon monoxide (CO) measured in parts per million (ppm).

    NO_PPB

    NOConcentration of nitrogen monoxide (NO) measured in parts per billion (ppb).

    PM10_UGM3

    PM 10

    Concentration of particulate matter ≤ 10 micrometers (PM10) measured in micrograms per cubic meter (µg/m³). NOX_PPB

    NOxConcentration of nitrogen oxides (NOx) measured in parts per billion (ppb).RWD_DEGREESResultant Wind Direction The average wind direction expressed in degrees. NOY_PPB

    NOy

    Concentration of total reactive nitrogen (NOy) measured in parts per billion (ppb). RWS_KNOTS

    Resultant Wind Speed

    The average wind speed measured in knots.

    If you have questions related to air quality, please reach out to Susan Kilmer (KilmerS@Michigan.gov or 517-242-2655). If you have map suggestions or functionality issues, please reach out to EGLE-Maps@Michigan.gov.From US EPA AirNow:Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here. Visit Michigan.gov/EGLE for more information about air monitoring in Michigan.

  12. d

    Worldwide satellite data | Air quality | Pollutants | Particulate...

    • datarade.ai
    .csv, .xls
    Updated Jun 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caeli (2022). Worldwide satellite data | Air quality | Pollutants | Particulate matter(PM2,5 – PM10) [Dataset]. https://datarade.ai/data-products/worldwide-satellite-data-air-quality-pollutants-particu-caeli
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 16, 2022
    Dataset authored and provided by
    Caeli
    Area covered
    Turkmenistan, Nepal, Vanuatu, China, Zambia, Mayotte, Slovenia, Ghana, Tanzania, Honduras
    Description

    Caeli can provide this data through an API, dashboard, real-time geo map, or via datasets(.csv). In addition, all this data is available in daily, monthly and annual formats. The data can be delivered in various spatial resolutions starting from 0.001 degrees latitude and longitude (WSG 84), which roughly converts to 100X100 meter.

    The Caeli datasets are often used for creating and validating various models and for training machine learning algorithms. We’ll allow you to specify your state or country, your preferred timeframe, resolution, and pollutant. Based on this information we’ll compile a reliable dataset. The measurements in de dataset can be used in determining the air quality of a region for a specific period of time. Additionally, your composite dataset can also serve for strategy and reporting purposes, such as ESG strategy, TCDF, SFDR, and sustainable decision making. The price of the dataset is based on the size of the area, the resolution chosen, and the number of years.

    Additional information about particulate matter(PM2,5 – PM10): Particulate matter (PM) refers to tiny particles suspended in the air that can be inhaled into the respiratory system. PM is classified by size, with PM2.5 and PM10 referring to particles that are 2.5 micrometers and 10 micrometers in diameter, respectively. PM2.5 particles are particularly harmful because they are small enough to pass through the respiratory system and enter the bloodstream, where they can cause a variety of health problems. PM2.5 and PM10 are often used as indicators of air quality, with higher concentrations of these particles in the air being associated with increased risk of respiratory and cardiovascular diseases.

    Are you interested in the pollutant particulate matter(PM2,5 – PM10) or would you like to gather more information about our opportunities? Please, do not hesitate to contact us. www.caeli.space

    Sector coverage: Financial | Energy | Government | Agricultural | Health | Shipping.

  13. n

    Pollutants and Air Quality data

    • data.campbelltown.nsw.gov.au
    • data.theparks.nsw.gov.au
    • +3more
    csv, excel, geojson +1
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Pollutants and Air Quality data [Dataset]. https://data.campbelltown.nsw.gov.au/explore/dataset/pollutants-and-air-quality-data/
    Explore at:
    excel, csv, geojson, jsonAvailable download formats
    Dataset updated
    Mar 11, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Environmental monitoring stations (EMS) were installed in Campbelltown and Liverpool's CBD in December 2020. The EMS measures weather data and pollutants data. This dataset stores pollutants related measures:nitrogendioxide (NO2 measured in ppb)carbonmonoxide (CO in ppb)ozone (O3 in ppb)particulate matter 10 (PM10 in µg/m³)particulate matter 2.5 (PM2.5 in µg/m³)Associated Air Quality Index is calculated based on a number of parameters. Data in this dataset is presented in the Quality of Place dashboard.Please note this data is indicative as sensors may from time to time provide incorrect data due to wear and tear or unforeseen circumstances.

  14. d

    Data from: Air Quality Index (AQI)

    • data.gov.tw
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Environment, Air Quality Index (AQI) [Dataset]. https://data.gov.tw/en/datasets/40448
    Explore at:
    Dataset authored and provided by
    Ministry of Environment
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The Air Quality Index (AQI) for each monitoring station is provided hourly. The original data version is announced on the Air Quality Monitoring Network website https://airtw.moenv.gov.tw

  15. U

    United States AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone

    • ceicdata.com
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone [Dataset]. https://www.ceicdata.com/en/united-states/air-quality-index-and-air-pollutants
    Explore at:
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 13, 2025 - Mar 24, 2025
    Area covered
    United States
    Description

    AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data was reported at 54.000 Index in 24 Mar 2025. This records a decrease from the previous number of 84.000 Index for 23 Mar 2025. AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data is updated daily, averaging 58.000 Index from Jan 1980 (Median) to 24 Mar 2025, with 16472 observations. The data reached an all-time high of 264.000 Index in 01 Jun 2022 and a record low of 19.000 Index in 04 Dec 2022. AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E001: Air Quality Index and Air Pollutants. [COVID-19-IMPACT]

  16. k

    Saudi Arabia - Air Quality

    • datasource.kapsarc.org
    • data.kapsarc.org
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Saudi Arabia - Air Quality [Dataset]. https://datasource.kapsarc.org/explore/dataset/air-quality/
    Explore at:
    Dataset updated
    Feb 26, 2024
    Area covered
    Saudi Arabia
    Description

    This dataset contains Riyadh Air Quality for 2019 - 2020. Data from The General Authority of Meteorology & Environmental Protection. Follow datasource.kapsarc.org for timely data to advance energy economics research.

  17. Air Pollutant Concentration

    • opendata.esrichina.hk
    • hub.arcgis.com
    Updated Apr 7, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2017). Air Pollutant Concentration [Dataset]. https://opendata.esrichina.hk/maps/6e0afa397b664a5da20fb5e9a5bdce54
    Explore at:
    Dataset updated
    Apr 7, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This data contains past 24 hours pollutant concentration in micrograms per cubic meter of air. The information is collected at various Air Quality Monitoring Stations where NO2 (nitrogen dioxide), O3 (ozone), SO2 (sulphur dioxide), CO (carbon monoxide), PM10 (respirable suspended particulates), and PM2.5 (fine suspended particulates) data is recorded at 60 minute intervals. The data was provided by the Environmental Protection Department of The Government of the Hong Kong Special Administrative Region at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.

  18. C

    Allegheny County Air Quality

    • data.wprdc.org
    • datasets.ai
    • +1more
    csv, geojson, html +2
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Air Quality [Dataset]. https://data.wprdc.org/dataset/allegheny-county-air-quality
    Explore at:
    html, csv, csv(1421), geojson(6680), txt(101367), pdf, csv(4527731)Available download formats
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    Air quality data is collected from the Allegheny County Health Department monitors throughout the county. This data must be verified by qualified individuals before it can be considered official. The following data is unverified. This means that any electrical disruption or equipment malfunction can report erroneous monitored data.

    For more information about the Health Department's Air Quality Program or to view a live version of the dashboard, please visit the ACHD website: https://alleghenycounty.us/Health-Department/Programs/Air-Quality/Air-Quality.aspx

    Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.

  19. Annual Air Pollutant Statistics

    • ouvert.canada.ca
    • open.canada.ca
    pdf, txt, xlsx
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2024). Annual Air Pollutant Statistics [Dataset]. https://ouvert.canada.ca/data/dataset/e5018406-cb90-4ded-a826-3e756402a2db
    Explore at:
    xlsx, pdf, txtAvailable download formats
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1995 - Dec 31, 2022
    Description

    This dataset provides a summary of annual air pollution statistics from 1995 to the current available year for six air pollutants: * Carbon Monoxide * Oxides of Nitrogen (NO, NO2, NOx) * Ozone * Fine Particulate Matter (PM2.5) * Sulphur Dioxide * Total Reduced Sulphur The annual statistics include percentiles, mean, maximums and also indicate the number of times an air monitoring station exceeded an Ontario annual ambient air quality criteria, where applicable. This information is also available in the annual Air Quality in Ontario Reports. The hourly air pollutant concentration data is posted in near real time on the Air Quality Ontario website: http://www.airqualityontario.com/

  20. a

    AirNow Air Quality Monitoring Data (Current)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • wifire-data.sdsc.edu
    • +2more
    Updated Sep 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). AirNow Air Quality Monitoring Data (Current) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/CalEMA::airnow-air-quality-monitoring-data-current
    Explore at:
    Dataset updated
    Sep 22, 2020
    Dataset authored and provided by
    CA Governor's Office of Emergency Services
    Area covered
    Description

    This United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2023). Air Quality Measures on the National Environmental Health Tracking Network [Dataset]. https://catalog.data.gov/dataset/air-quality-measures-on-the-national-environmental-health-tracking-network
Organization logo

Air Quality Measures on the National Environmental Health Tracking Network

Explore at:
Dataset updated
Jul 20, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

The Environmental Protection Agency (EPA) provides air pollution data about ozone and particulate matter (PM2.5) to CDC for the Tracking Network. The EPA maintains a database called the Air Quality System (AQS) which contains data from approximately 4,000 monitoring stations around the country, mainly in urban areas. Data from the AQS is considered the "gold standard" for determining outdoor air pollution. However, AQS data are limited because the monitoring stations are usually in urban areas or cities and because they only take air samples for some air pollutants every three days or during times of the year when air pollution is very high. CDC and EPA have worked together to develop a statistical model (Downscaler) to make modeled predictions available for environmental public health tracking purposes in areas of the country that do not have monitors and to fill in the time gaps when monitors may not be recording data. This data does not include "Percent of population in counties exceeding NAAQS (vs. population in counties that either meet the standard or do not monitor PM2.5)". Please visit the Tracking homepage for this information.View additional information for indicator definitions and documentation by selecting Content Area "Air Quality" and the respective indicator at the following website: http://ephtracking.cdc.gov/showIndicatorsData.action

Search
Clear search
Close search
Google apps
Main menu