This publication summarises the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN). This release covers annual average concentrations in the UK of:
The release also covers the number of days when air pollution was ‘Moderate’ or higher for any one of five pollutants listed below:
These statistics are used to monitor progress against the UK’s reduction targets for concentrations of air pollutants. Improvements in air quality help reduce harm to human health and the environment.
Air quality in the UK is strongly linked to anthropogenic emissions of pollutants. For more information on UK emissions data and other information please refer to the air quality and emissions statistics GOV.UK page.
The statistics in this publication are based on data from the Automatic Urban and Rural Network (AURN) of air quality monitors. The https://uk-air.defra.gov.uk/" class="govuk-link">UK-AIR website contains the latest air quality monitoring data for the UK and detailed information about the different monintoring networks that measure air quality. The website also hosts the latest data produced using Pollution Climate Mapping (PCM) which is a suite of models that uses both monitoring and emissions data to model concentrations of air pollutants across the whole of the UK. The UK-AIR website also provides air pollution episode updates and information on Local Authority Air Quality Management Areas as well as a number of useful reports.
The monitoring data is continuously reviewed and subject to change when issues are highlighted. This means that the time series for certain statistics may vary slightly from year to year. You can access editions of this publication via The National Archives or the links below.
The datasets associated with this publication can be found here ENV02 - Air quality statistics.
As part of our ongoing commitment to compliance with the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Official Statistics we wish to strengthen our engagement with users of air quality data and better understand how the data is used and the types of decisions that they inform. We invite users to https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">register as a “user of Air Quality data”, so that we can retain your details, inform you of any new releases of Air Quality statistics and provide you with the opportunity to take part in user engagement activities that we may run. If you would like to register as a user of Air Quality data, please provide your details in the attached https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">form.
https://webarchive.nationalarchives.gov.uk/ukgwa/20250609165125/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2023
https://webarchive.nationalarchives.gov.uk/ukgwa/20230802031254/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2022
https://webarchive.nationalarchives.gov.uk/ukgwa/20230301015627/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2021
https://webarchive.nationalarchives.gov.uk/ukgwa/20211111164715/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2020
https://webarchive.nationalarchives.gov.uk/20201225100256/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2019
<a rel="external" href="https://webarchive.nationalarchives.gov.uk/20200303
This csv file provides air pollution data information for Florida and Districts for 2017, 2018, 2019 and 2020. Through the FDOT Source Book Special Edition 2020 report, users can drill down the air pollution data at the statewide and District level. The report's link is: https://sourcebook-2020-se-fdot.hub.arcgis.com/Florida remains within acceptable EPA standards for ozone concentration and fine particulate matter (PM 2.5).Data source: Environmental Protection Agency (EPA) Air Data. For any additional information, please contact the Forecasting and Trends Office (FTO) at 850-414-5396.
Dataset contains information on New York City air quality surveillance data.
Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.
Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas
The Environmental Protection Agency (EPA) provides air pollution data about ozone and particulate matter (PM2.5) to CDC for the Tracking Network. The EPA maintains a database called the Air Quality System (AQS) which contains data from approximately 4,000 monitoring stations around the country, mainly in urban areas. Data from the AQS is considered the "gold standard" for determining outdoor air pollution. However, AQS data are limited because the monitoring stations are usually in urban areas or cities and because they only take air samples for some air pollutants every three days or during times of the year when air pollution is very high. CDC and EPA have worked together to develop a statistical model (Downscaler) to make modeled predictions available for environmental public health tracking purposes in areas of the country that do not have monitors and to fill in the time gaps when monitors may not be recording data. This data does not include "Percent of population in counties exceeding NAAQS (vs. population in counties that either meet the standard or do not monitor PM2.5)". Please visit the Tracking homepage for this information.View additional information for indicator definitions and documentation by selecting Content Area "Air Quality" and the respective indicator at the following website: http://ephtracking.cdc.gov/showIndicatorsData.action
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset provides a summary of annual air pollution statistics from 1995 to the current available year for six air pollutants: * Carbon Monoxide * Oxides of Nitrogen (NO, NO2, NOx) * Ozone * Fine Particulate Matter (PM2.5) * Sulphur Dioxide * Total Reduced Sulphur The annual statistics include percentiles, mean, maximums and also indicate the number of times an air monitoring station exceeded an Ontario annual ambient air quality criteria, where applicable. This information is also available in the annual Air Quality in Ontario Reports. The hourly air pollutant concentration data is posted in near real time on the Air Quality Ontario website: http://www.airqualityontario.com/
This United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.
This data set contains data on the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN).
If you require the data in another format please contact: AQIE.Correspondence@defra.gov.uk
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">247 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">211 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy
Air pollution Statistics: The air pollution problem is by far the most significant environmental health issue around the world and causes an estimated 7.7 million deaths each year. Climate change and air pollution are closely linked since every major pollutant has an impact on climate and many have common causes with greenhouse gases. Enhancing the quality of air can lead to improved health, development, and environmental benefits.
According to UNEP Pollution Action Note, the global condition of pollution in the air, its major sources, the effects of the air pollution on health as well as the national efforts to address this problem. The tiny particles that pollute the air are mostly derived from human activities such as burning fossil fuels for transportation, waste-burning electricity agriculture, and the major source of ammonia and methane as well as the mining and chemical industries. Let's look into air pollution and its impact.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset spans from January 1, 2014, to March 15, 2020, with measurements recorded on an hourly basis.
The environmental and pollutant data was provided by the Austrian government under the following license: CC-BY-4.0: Land Steiermark - data.steiermark.gv.at
Air quality by means of NO2, NO, NOx, PM10 and O3 was measured at five sites in Graz, Austria (Süd (eng. South) - S, Nord (eng. North) - N, West (eng. West) - W, Don Bosco – D, Ost (eng. East) – O).
Temperature, precipitation, relative humidity, pressure, and wind speed are among the weather conditions considered. To represent wind direction, the wind speed was multiplied by the sine and cosine of the wind direction.
Lags were generated using weather data, considering the last 12 data points. The mean of these 12 values was then calculated to represent an hourly metric.
The ERA5-Land data is subject to the Copernicus licence from following source https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
it includes following variables :
Snowfall - sf
Surface latent heat flux - slhf
Snowmelt - smlt
Snow cover - snowc
Windspeed - speed
Surface latent heat flux sshf
Soil temperature level 4 - stl4
Skin temperature - str
Surface thermal radiation downwards - strd
Total precipitation - tp
Temperature of snow layer - tsn
10m u-component of wind - u10
10m v-component of wind - v10
Surface net radiation - rsn
Snow depth - sd
Snow depth water equivalent - sde
2m dewpoint temperature - d2m
Forecast albedo - fal
Temporal values are also incorporated into this dataset, values such as holidays, weekdays, seasons, and months.
The dataset includes Prophet values for all pollutants, which were determined by considering various metrics such as trend, seasonality (weekly, yearly, and daily), as well as yhat lower and upper bounds.
The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requirements for monitoring acid deposition and Hazardous Air Pollutants (HAPs) were added in 1990. Most monitoring sites contain multiple instruments. Most also report meteorological data, including wind speed and direction, humidity, atmospheric pressure, inbound solar radiation, precipitation and other factors relevant to air quality analysis. The current system of sites represents a number of independently-defined monitoring networks with different regulatory or scientific purposes, such as the State and Local Air Monitoring System, the National Air Toxics Trends sites, the Urban Air Toxics sites, the IMPROVE visibility monitoring network, the air toxics monitoring sites for schools, and others. (A complete list of air quality monitoring networks is available at https://www.epa.gov/???). Efforts are under way through NCore Multipollutant Monitoring Network (https://www.epa.gov/ttnamti1/ncore/index.html) to streamline and integrate advanced air quality measurement systems to minimize costs of data collection. Measurements and estimates from these networks are collected across the entire U.S., including all states and territories, with emphasis on documenting pollutant exposures in populated areas.Sampling frequencies vary by pollutant (hourly, 3- and 8-hour, daily, monthly, seasonal, and annual measurements), as required by different NAAQS. Some 50,000 measurements per day are added to the EPA's central air quality data repository, the Air Quality System (AQS). All data, including meteorological information, is public and non-confidential and available through the AQS Data Mart (https://www.epa.gov/ttn/airs/aqsdatamart/). Generally, data for one calendar quarter are reported by the end of the following quarter; some values may be subsequently changed due to quality assurance activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a PBL module on Air Pollution to be used in an introductory environmental science course to motivate students to analyze related environmental justice issues.Original data was from the US EPA data on "State EJScreen Data at the Block Group Level" (EJSCREEN_2023_BG_StatePct_with_AS_CNMI_GU_VI.csv) which was downloaded from https://www.epa.gov/ejscreen/download-ejscreen-data on December 20, 2023. (Note: Access to the EJSCREEN tool was removed during February 2005).This data was processed and cleaned as described in the data provenance document.Lecture Slides, Activity Sheets and Instructor Notes are available here.The following files are included:Data Provenance and Data Dictionary: Data Provenance and Data Dictionary.pdfR Script for Data Processing: EJSCREEN_Data_Curation_NC_Summarized_by_County.RProcessed Dataset for North Carolina: EJScreen_State_BGLevel_NC_13Columns.csvCurated Data used in the Module - Summarized Dataset for North Carolina (summarized by county): EJScreen_State_BGLevel_NC_Summarized_By_County_13Columns.csvData Dictionary: Data_Dictionary_EJSCREEN_2023_BG_Columns.pdfOriginal Dataset from EPA/EJSCREEN from which Data was Extracted for North Carolina: DS4EJ_EJSCREEN_2023_BG_StatePct_with_AS_CNMI_GU_VI.csv
https://datos.madrid.es/egob/catalogo/aviso-legalhttps://datos.madrid.es/egob/catalogo/aviso-legal
The Comprehensive Air Quality System of the City Council of Madrid allows to know at all times the levels of air pollution in the municipality. In this dataset you can obtain the information collected by air quality monitoring stations, with daily data by annuities since 2001. (In the current year the information will be updated monthly). The daily values published in the open data portal are calculated as an arithmetic mean of the 24 hourly values of each day. The air quality legislation establishes, for each of the regulated pollutants, different limit or target values expressed as hourly, daily, eight-hour and annual averages. Other air quality datasets are also available on this portal: Air quality: Real-time data Air quality. Timetable data since 2001 Air quality: Control stations You can also find more information about this data in the Transparency Portal > Air .
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The National Air Pollution Surveillance (NAPS) program is the main source of ambient air quality data in Canada. The NAPS program, which began in 1969, is now comprised of nearly 260 stations in 150 rural and urban communities reporting to the Canada-Wide Air Quality Database (CWAQD). Managed by Environment and Climate Change Canada (ECCC) in collaboration with provincial, territorial, and regional government networks, the NAPS program forms an integral component of various diverse initiatives; including the Air Quality Health Index (AQHI), Canadian Environmental Sustainability Indicators (CESI), and the US-Canada Air Quality Agreement. Once per year, typically autumn, the Continuous data set for the previous year is reported on ECCC Data Mart. Beginning in March of 2020 the impact of the COVID-19 pandemic on NAPS Operations has resulted in reduced data availability for some sites and parameters. For additional information on NAPS data products contact the NAPS inquiry centre at RNSPA-NAPSINFO@ec.gc.ca Last updated March 2023. Supplemental Information Monitoring Program Overview The NAPS program is comprised of both continuous and (time-) integrated measurements of key air pollutants. Continuous data are collected using gas and particulate monitors, with data reported every hour of the year, and are available as hourly concentrations or annual averages. Integrated samples, collected at select sites, are analyzed at the NAPS laboratory in Ottawa for additional pollutants, and are typically collected for a 24 hour period once every six days, on various sampling media such as filters, canisters, and cartridges. Continuous Monitoring Air pollutants monitored continuously include the following chemical species: • carbon monoxide (CO) • nitrogen dioxide (NO2) • nitric oxide (NO) • nitrogen oxides (NOX) • ozone (O3) • sulphur dioxide (SO2) • particulate matter less than or equal to 2.5 (PM2.5) and 10 micrometres (PM10) Each provincial, territorial, and regional government monitoring network is responsible for collecting continuous data within their jurisdiction and ensuring that the data are quality-assured as specified in the Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines. The hourly air pollutant concentrations are reported as hour-ending averages in local standard time with no adjustment for daylight savings time. These datasets are posted on an annual basis. Integrated Monitoring Categories of chemical species sampled on a time-integrated basis include: • fine (PM2.5) and coarse (PM10-2.5) particulate composition (e.g., metals, ions), and additional detailed chemistry provided through a subset of sites by the NAPS PM2.5 speciation program; • semi-volatile organic compounds (e.g., polycyclic aromatic hydrocarbons such as benzo[a]pyrene); • volatile organic compounds (e. g., benzene) The 24-hour air pollutant samples are collected from midnight to midnight. These datasets are generally posted on a quarterly basis. Data Disclaimer NAPS data products are subject to change on an ongoing basis, and reflect the most up-to-date and accurate information available. New versions of files will replace older ones, while retaining the same location and filename. The ‘Data-Donnees’ directory contains continuous and integrated data sorted by sampling year and then measurement. Pollutants measured, sampling duration and sampling frequency may vary by site location. Additional program details can be found at ‘ProgramInformation-InformationProgramme’ also in the data resources section. Citations National Air Pollution Surveillance Program, (year accessed). Available from the Government of Canada Open Data Portal at open.canada.ca.
The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in designating attainment/non-attainment areas, evaluating state implementation plans for non-attainment areas, performing modeling for permit review analysis, and other air quality functionsThe statutory authority leading to the collection of this information comes from Title I, Part A of the Clean Air Act. Sustance classes include Criteria Air Pollutants, Hazardous Air Pollutants, and Greenhouse Gases. Data no longer collected, current Ambient Air Quality Data Inventory uses higher geographic density and more robust methods of measurement.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air Quality Monitoring Data Dublin City Council measures ambient air quality in Dublin in accordance with Air Quality standards. 'This dataset contains Air Quality Monitoring Data from January to March 2011, consisting five spreadsheets taken from five air monitoring sites around Dublin City that show hourly results for the pollutants Sulphur Dioxide( SO2) , Nitrogen Dioxide (NO2), Carbon Monoxide ( CO) and Particulate Matter (PM2.5 & PM10). The regulations are set by the Clean Air for Europe Directive 2008 (2008/50); from January 1st, 2010 the directive also requires PM2.5 monitoring. There is no real time data for PM10 or PM25'Black smoke monitoring is also carried out as a form of background monitoring using the benchmark of EU Directive 80/779/EEC as a guide however this has been scaled down since the 1990s following the introduction of the coal ban.'Multi-pollutant sites are:'Winetavern Street PM10, NO2, CO, SO2'Coleraine Street- PM2.5, NO2, CO, SO2'Ballyfermot PM10, NO2, SO2'PM10 only sites include:'Phoenix Park'Rathmines'PM2.5 only:'Marino'Black Smoke:'Ringsend'Crumlin'Finglas'Cabra''Annual report published http://www.dublincity.ie/WaterWasteEnvironment/AirQualityMonitoringandNoiseControl/AirPollution/Documents/Annual_report_2009.pdf
Air pollution levels in cities vary greatly around the world, though they are typically higher in developing regions. In 2024, the cities of Jakarta and Cairo had an average PM2.5 concentrations of **** and **** micrograms per cubic meter (μg/m³) respectively. By comparison, PM2.5 levels in London and New York were less than ***** μg/m³. Nevertheless, pollution levels in these four major cities are all higher than the World Health Organization's healthy limit, which are set at an annual average of less than **** μg/m³. There are many sources of air pollution, such as energy production, transportation, and agricultural activities.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
OpenAQ is an open-source project to surface live, real-time air quality data from around the world. Their “mission is to enable previously impossible science, impact policy and empower the public to fight air pollution.” The data includes air quality measurements from 5490 locations in 47 countries.
Scientists, researchers, developers, and citizens can use this data to understand the quality of air near them currently. The dataset only includes the most current measurement available for the location (no historical data).
Update Frequency: Weekly
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.openaq.[TABLENAME]
. Fork this kernel to get started.
Dataset Source: openaq.org
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source and is provided "AS IS" without any warranty, express or implied.
Annual emissions of various air pollutants in the United States have experienced dramatic reductions over the past half a century. As of 2024, emissions of nitrogen oxides (NOx) had reduced by more than ** percent since 1970 to *** million tons. Sulfur dioxide (SO₂) emissions have also fallen dramatically in recent decades, dropping from ** million tons to *** million tons between 1990 and 2024. Air pollutants can pose serious health hazards to humans, with the number of air pollution related deaths in the U.S. averaging ****** a year.
https://data.gov.tw/licensehttps://data.gov.tw/license
The Air Quality Index (AQI) for each monitoring station is provided hourly. The original data version is announced on the Air Quality Monitoring Network website https://airtw.moenv.gov.tw
This publication summarises the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN). This release covers annual average concentrations in the UK of:
The release also covers the number of days when air pollution was ‘Moderate’ or higher for any one of five pollutants listed below:
These statistics are used to monitor progress against the UK’s reduction targets for concentrations of air pollutants. Improvements in air quality help reduce harm to human health and the environment.
Air quality in the UK is strongly linked to anthropogenic emissions of pollutants. For more information on UK emissions data and other information please refer to the air quality and emissions statistics GOV.UK page.
The statistics in this publication are based on data from the Automatic Urban and Rural Network (AURN) of air quality monitors. The https://uk-air.defra.gov.uk/" class="govuk-link">UK-AIR website contains the latest air quality monitoring data for the UK and detailed information about the different monintoring networks that measure air quality. The website also hosts the latest data produced using Pollution Climate Mapping (PCM) which is a suite of models that uses both monitoring and emissions data to model concentrations of air pollutants across the whole of the UK. The UK-AIR website also provides air pollution episode updates and information on Local Authority Air Quality Management Areas as well as a number of useful reports.
The monitoring data is continuously reviewed and subject to change when issues are highlighted. This means that the time series for certain statistics may vary slightly from year to year. You can access editions of this publication via The National Archives or the links below.
The datasets associated with this publication can be found here ENV02 - Air quality statistics.
As part of our ongoing commitment to compliance with the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Official Statistics we wish to strengthen our engagement with users of air quality data and better understand how the data is used and the types of decisions that they inform. We invite users to https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">register as a “user of Air Quality data”, so that we can retain your details, inform you of any new releases of Air Quality statistics and provide you with the opportunity to take part in user engagement activities that we may run. If you would like to register as a user of Air Quality data, please provide your details in the attached https://forms.office.com/pages/responsepage.aspx?id=UCQKdycCYkyQx044U38RAvtqaLEKUSxHhjbo5C6dq4lUMFBZMUJMNDNCS0xOOExBSDdESVlHSEdHUi4u&route=shorturl" class="govuk-link">form.
https://webarchive.nationalarchives.gov.uk/ukgwa/20250609165125/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2023
https://webarchive.nationalarchives.gov.uk/ukgwa/20230802031254/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2022
https://webarchive.nationalarchives.gov.uk/ukgwa/20230301015627/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2021
https://webarchive.nationalarchives.gov.uk/ukgwa/20211111164715/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2020
https://webarchive.nationalarchives.gov.uk/20201225100256/https://www.gov.uk/government/statistics/air-quality-statistics" class="govuk-link">Air Quality Statistics in the UK, 1987 to 2019
<a rel="external" href="https://webarchive.nationalarchives.gov.uk/20200303