Facebook
TwitterVessel traffic data, or Automatic Identification System (AIS) data, are collected by the U.S. Coast Guard through an onboard navigation safety device that transmits and monitors the location and characteristics of large vessels in U.S. and international waters in real time. In the U.S., the Coast Guard and commercial vendors collect AIS data, which can also be used for a variety of coastal planning purposes.The Bureau of Ocean Energy Management (BOEM) and the National Oceanic and Atmospheric Administration (NOAA) have worked jointly to repurpose and make available some of the most important records from the U.S. Coast Guard’s national network of AIS receivers. Information such as location, time, ship type, speed, length, beam, and draft have been extracted from the raw data and prepared for analyses in desktop GIS software.Vessel tracks show the location and characteristics of commercial, recreational, and other marine vessels as a sequence of positions transmitted by AIS. AIS signals are susceptible to interference, and this can result in a gap within a vessel track. Vessels can have one or more tracks of any length. Furthermore, tracks will not necessarily start or stop at a well-defined port, or when a vessel is not in motion.The distribution, type, and frequency of vessel tracks are a useful aid to understanding the risk of conflicting uses within a certain geographic area and are an efficient and spatially unbiased indicator of vessel traffic. These tracks are used to build respective AIS Vessel Transit Counts layers, summarized at a 100-meter grid cell resolution. A single transit is counted each time a vessel track passes through, starts, or stops within a grid cell.This item is curated by the MarineCadastre.gov team. Find more information at marinecadastre.gov.
Facebook
TwitterA vessel track shows the location and characteristics of commercial and recreational boats as a sequence of positions transmitted by an Automatic Identification System (AIS). AIS signals are susceptible to interference and this can result in a gap within a vessel track. The distribution, type, and frequency of vessel tracks are a useful aid to understanding the risk of conflicting uses within a...
Facebook
TwitterAutomatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and international waters in real-time. In the U.S. the Coast Guard and industry collect AIS data, which can also be used for a variety of coastal planning purposes. NOAA and BOEM have worked jointly to re-task and make available some of the most important records from the U.S. Coast Guard's national network of AIS receivers. This dataset represents annual vessel transit counts summarized at a 100 m by 100 m geographic area. A single transit is counted each time a vessel track passes through, starts, or stops within a 100 m grid cell.
Facebook
TwitterAutomatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and international waters in real-time. In the U.S. the Coast Guard and industry collect AIS data, which can also be used for a variety of coastal planning purposes. NOAA and BOEM have worked jointly to re-task and make available some of the most important records from the U.S. Coast Guard's national network of AIS receivers. Information such as location, time, ship type, length, width, and draft have been extracted from the raw data and prepared as track lines for analyses in desktop GIS software.
Facebook
TwitterAutomatic identification system (AIS) data are used to identify and track vessels for various purposes (primarily navigational safety). These data can be used to study vessel traffic, such as ship routing and speed over ground (SOG). Source data were obtained from the United States Coast Guard Navigation Center (USCG NAVCEN) for the period from June 2008 to December 2015. Derived data resulting from the processing of the source data are described here. This data set presents annual raster data (1 square kilometer grid size) off California from 2008-2015 for cumulative ship traffic density (kilometers/day) and mean SOG (knots; distance-weighted). The universe of data is limited to vessels with a length greater than or equal to 80 meters. The data are analyzed in three groups: freight vessels (container, general cargo, bulk carrier, refrigerated cargo, vehicle carrier, etc.), tanker vessels (crude oil, chemical/products, liquid petroleum gas, etc.) and all vessels (the previously noted vessels, plus passenger vessels and other vessel classes). The data are contained in a file geodatabase format as raster data sets. Metadata for the overall data set are contained at the level of the file geodatabase. The data were generated and used for a research article (Moore et al. 2018): Moore, T.J., Redfern, J.V., Carver, M., Hastings, S., Adams, J.D., Silber, G.K., 2018. Exploring Ship Traffic Variability off California. Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2018.03.010 See this manuscript for more information on the data description, issues, and processing methods.
Facebook
TwitterAutomatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and international waters in real-time. In the U.S. the Coast Guard and industry collect AIS data, which can also be used for a variety of coastal planning purposes. NOAA and BOEM have worked jointly to re-task and make available some of the most important records from the U.S. Coast Guard's national network of AIS receivers. This dataset represents annual vessel transit counts summarized at a 100 m by 100 m geographic area. A single transit is counted each time a vessel track passes through, starts, or stops within a 100 m grid cell.
Facebook
TwitterThese data are a spatially explicit representation of monthly shipping intensity in the Pacific Arctic region from January 1, 2015 to December 31, 2020. We calculated shipping intensity based on Automatic Identification System (AIS) data, a type of Global Positioning System (GPS) transmitter required by the International Maritime Organization on all ships over 300 gross tonnes on an international voyage, all cargo ships over 500 gross tonnes, and all passenger ships. We used AIS data received by the exactEarth satellite constellation (64 satellites as of 2020), ensuring spatial coverage regardless of national jurisdiction or remoteness. Our analytical approach converted raw AIS input into monthly hex datasets. We first filtered raw AIS messages to remove spurious records and GPS errors, then joined remaining vessel positional records with static messages including descriptive attributes. We further categorized these messages into one of four general ship types (cargo; tanker; fishing; and other). For the vector dataset, we spatially intersected AIS messages with a hexagon (hex) grid and calculated the number of unique ships, the number of unique ships per day (summed over each month), and the average and standard deviation of the speed over ground. We calculated these values for each month for all vessels as well as vessels subdivided by ship type and for messages from vessels greater than 65 feet long and traveling at greater than 10 knots. These monthly datasets provide a critical snapshot of dynamic commercial and natural systems in the Pacific Arctic region. Recent declines in sea ice have lengthened the duration of the shipping season and have expanded the spatial coverage of large vessel routes, from the Aleutian Islands through the Bering Strait and into the southern Chukchi Sea. As vessel traffic has increased, so has exposure to the myriad environmental risks posed by large ships, including oil spills, underwater noise pollution, large cetacean ship-strikes, and discharges of pollutants. This dataset provides scientific researchers, local community members, mariners, and decision-makers with a quantitative means to evaluate the distribution and intensity of shipping across space and through time. In addition to these hex data, we also produced data products in 25- and 10-km raster format as well as a 1-km coastal data subset. To find these products, search for “North Pacific and Arctic Marine Vessel Traffic Dataset” in the Arctic Data Center’s data repository.
Facebook
TwitterVessels traveling in U.S. coastal and inland waters frequently use Automatic Identification Systems (AIS) for navigation safety. The U.S. Coast Guard collects AIS records using shore-side antennas. These records have been filtered and converted from a series of points to a set of track lines for each vessel. Vessels can have one or more tracks of any length, and can be separated by gaps due to intermittent loss of the AIS signal. Tracks will not necessarily start or stop at a well defined port, or when a vessel is not in motion. Vessel tracks are an efficient and spatially unbiased indicator of vessel traffic.
Facebook
TwitterThis data file contains AIS vessel tracking records used in a study of low-frequency ocean noise off the California coast. Data span January through July of 2018 - 2020.
Facebook
Twitterhttps://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global AIS Ship Tracking System market is booming, projected to reach $650 million by 2033 with an estimated 8% CAGR. Driven by increased maritime traffic and safety regulations, this market analysis explores key segments, leading companies, and regional trends in AIS technology. Discover market insights and future projections.
Facebook
TwitterShip traffic for the State of Hawaii, identifying the number of times a vessel occupied each square kilometer during the period 2008-2009. The Automatic Identification System (AIS) is an internationally-recognized shipboard broadcast system that communicates information to shore-based stations and other AIS-equipped ships. The U.S. Coast Guard (USCG) has developed rules applicable to both U.S. and foreign vessels that require owners and operators of most commercial vessels to install and use AIS to increase security and safety of maritime transportation. PacIOOS obtained AIS data from the USCG Nationwide AIS (NAIS) project. While specific times for ship locations were redacted, the data represent a cumulation over the two-year period 2008-2009 from which ship frequency was computed at 1-km resolution.
Facebook
TwitterTrack the APT NO.503 in real-time with AIS data. TRADLINX provides live vessel position, speed, and course updates. Search by MMSI: 416007985, IMO: 9444132
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Marine AIS Monitoring System market is booming, projected to reach $2.575 billion by 2033 with a 7% CAGR. This report analyzes market drivers, trends, restraints, and key players like Oceaneering and Spire Global, providing insights into vessel tracking, safety regulations, and technological advancements shaping this dynamic sector.
Facebook
TwitterTrack the FUHAI in real-time with AIS data. TRADLINX provides live vessel position, speed, and course updates. Search by MMSI: 371237000, IMO: 9300611
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Explore the dynamic AIS Transponder market, projected to reach USD 80 million by 2025 with a robust CAGR. Discover key drivers, trends, and regional insights for maritime safety and vessel tracking solutions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All the modern surveillance systems take advantage of the Automatic Identification System (AIS), a compulsory tracking system for many types of vessels. Ships that carry AIS transponders on board transmit their position and status in order to alert nearby vessels and ground stations, but this information can well be used to identify events of interest and support decision making. The detection of anomalies (i.e. unexpected sailing behavior) in vessels’ trajectories is such an event, which is of utmost importance. Approaches for detecting such anomalies vary from extracting normality models to searching for individual cases, such as AIS switch-off or collision avoidance maneuvers. The current research work follows the former method; it employs sparse historic AIS data and polynomial interpolation in order to extract shipping lanes. It modifies the DB-Scan clustering algorithm in order to achieve more coherent trajectory clusters, which are then composed to create the shipping lanes. The proposed approach implements distributed processing on Apache Spark in order to improve processing speed and scalability and is evaluated using real-world AIS data collected from terrestrial AIS receivers. The evaluation shows that the biggest part (i.e. more than 90%) of any future vessel trajectory falls within the extracted shipping lanes.
Facebook
TwitterTrack the EVER ACT in real-time with AIS data. TRADLINX provides live vessel position, speed, and course updates. Search by MMSI: 352978199, IMO: 9893905
Facebook
TwitterAutomatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and international waters in real-time. This dataset represents the density of vessel traffic in 2011 for the contiguous United States offshore waters from vessels with AIS transponders in 100 meter grid cells. The dataset is best interpreted...
Facebook
TwitterTrack the GOLDEN WAVE in real-time with AIS data. TRADLINX provides live vessel position, speed, and course updates. Search by MMSI: 353587000, IMO: 9819911
Facebook
TwitterVessel traffic data or Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and international waters in real-time. In the U.S. the Coast Guard and industry collect AIS data, which can also be used for a variety of coastal management purposes. NOAA and BOEM have worked jointly to make available these data from the U.S. Coast Guards national network of AIS receivers. The original records were filtered to a one-minute frequency rate and were subsetted to depict the location and description of vessels broadcasting within the Exclusive Economic Zone. MarineCadastre.gov AIS data are divided by month and Universal Transverse Mercator (UTM) zone.
Facebook
TwitterVessel traffic data, or Automatic Identification System (AIS) data, are collected by the U.S. Coast Guard through an onboard navigation safety device that transmits and monitors the location and characteristics of large vessels in U.S. and international waters in real time. In the U.S., the Coast Guard and commercial vendors collect AIS data, which can also be used for a variety of coastal planning purposes.The Bureau of Ocean Energy Management (BOEM) and the National Oceanic and Atmospheric Administration (NOAA) have worked jointly to repurpose and make available some of the most important records from the U.S. Coast Guard’s national network of AIS receivers. Information such as location, time, ship type, speed, length, beam, and draft have been extracted from the raw data and prepared for analyses in desktop GIS software.Vessel tracks show the location and characteristics of commercial, recreational, and other marine vessels as a sequence of positions transmitted by AIS. AIS signals are susceptible to interference, and this can result in a gap within a vessel track. Vessels can have one or more tracks of any length. Furthermore, tracks will not necessarily start or stop at a well-defined port, or when a vessel is not in motion.The distribution, type, and frequency of vessel tracks are a useful aid to understanding the risk of conflicting uses within a certain geographic area and are an efficient and spatially unbiased indicator of vessel traffic. These tracks are used to build respective AIS Vessel Transit Counts layers, summarized at a 100-meter grid cell resolution. A single transit is counted each time a vessel track passes through, starts, or stops within a grid cell.This item is curated by the MarineCadastre.gov team. Find more information at marinecadastre.gov.