8 datasets found
  1. d

    Protected Areas Database of the United States (PAD-US)

    • search.dataone.org
    • datadiscoverystudio.org
    • +1more
    Updated Oct 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Geological Survey (USGS) Gap Analysis Program (GAP) (2017). Protected Areas Database of the United States (PAD-US) [Dataset]. https://search.dataone.org/view/0459986b-9a0e-41d9-9997-cad0fbea9c4e
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    US Geological Survey (USGS) Gap Analysis Program (GAP)
    Time period covered
    Jan 1, 2005 - Jan 1, 2016
    Area covered
    United States,
    Variables measured
    Shape, Access, Des_Nm, Des_Tp, Loc_Ds, Loc_Nm, Agg_Src, GAPCdDt, GAP_Sts, GIS_Src, and 20 more
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

  2. a

    Coastal LCD Land Ownership

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Feb 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2018). Coastal LCD Land Ownership [Dataset]. https://hub.arcgis.com/maps/3aa94d622fdb42f88ee0a5dfe86f9b74
    Explore at:
    Dataset updated
    Feb 26, 2018
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    ◦Overview: A key principle of Landscape Conservation Design is that “Stakeholders design landscape configurations that promote resilient and sustainable social-ecological systems” (Campellone et al, 2018). From Campellone et al: (2018): “A beneficial aspect of stakeholder engagement in spatial design is the development of a deeper trust that the models used to identify priorities integrate their interests with other information and knowledge, which furthers social learning and collective agreement on resource allocation and landscape objectives” (Melillo et al., 2014). Overall, the co-development of a spatial design helps organize landscape elements while maintaining and improving stakeholder buy-in” (De Groot, Alkemade, Braat, Hein, & Willemen, 2009; Melillo et al., 2014).”◦Analytical Question: Create a prototype landscape design (blueprint) that integrates multiple values on the landscape including wildlife conservation, forest and agriculture production, recreation, cultural and human health. The prototype will be created based upon readily available data.This analysis will be used to understand landscape-scale conservation and working landscape priorities, while incorporating other important values.The blueprint will be used to represent a sustainable landscape in the future.◦Desired Outcome: A map or maps that represents a balance of multiple values on the landscape, with a focus on conservation and working landscape values.

  3. r

    Australia's Indigenous forest estate (2020)

    • researchdata.edu.au
    • data.gov.au
    Updated Jan 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Bureau of Agricultural and Resource Economics and Sciences (2021). Australia's Indigenous forest estate (2020) [Dataset]. https://researchdata.edu.au/australias-indigenous-forest-estate-2020/2989279
    Explore at:
    Dataset updated
    Jan 8, 2021
    Dataset provided by
    data.gov.au
    Authors
    Australian Bureau of Agricultural and Resource Economics and Sciences
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    This is a superseded dataset, the most recent Australia's Indigenous land and forest estate spatial dataset can be found at: https://www.agriculture.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/indigenous-land-and-forest.\r \r Australia’s Indigenous forest estate (2020) is a continental spatial dataset that identifies and reports separately the individual attributes of Australia’s Indigenous estate, namely the extent of land and forest over which Indigenous peoples and communities have ownership, management or co-management, or other special rights.\r \r The dataset was compiled by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) for the National Forest Inventory (NFI), a collaborative partnership between the Australian and state and territory governments. The role of the NFI is to collate, integrate and communicate information on Australia's forests. The NFI applies a national classification to state and territory data to allow seamless integration of these datasets. Multiple independent sources of external data are used to fill data gaps and improve the quality of the final dataset.\r \r Australia’s National Forest Inventory has previously used the four derived category combinations of Dillon et al. (2015) (https://www.agriculture.gov.au/sites/default/files/documents/IndigenousForestEstate_20150828_v1.0.0.pdf) for reporting the Indigenous estate in Australia’s State of the Forests Report 2013 and Australia’s State of the Forests Report 2018. These four categories combined in various ways the individual attributes of the Indigenous estate, with an area of land or forest being allocated to only one of the four categories. However, the categories did not allow separate reporting on Indigenous ownership, management or co-management, or other special rights.​\r \r The methodology described in Australia’s Indigenous land and forest estate: separate reporting of Indigenous ownership, management and other special rights (Jacobsen et al. 2020) (https://www.agriculture.gov.au/abares/forestsaustralia/publications/indigenous-estate-report) disentangles the four categories of Dillon et al. (2015), and allows separate reporting of each of Indigenous ownership of land or forest, Indigenous management or co‑management of land or forest, and land or forest over which Indigenous peoples and communities have other special rights. Separate spatial coverages were created for each of these attributes, and this new dataset can form the basis for subsequent reporting on the relationships between Indigenous peoples and land or forest.\r \r The methods and data in this data package use the same sources of data used for assembling the Australia’s Indigenous forest estate (2018) spatial dataset, but presents the information on the Indigenous land estate by the separate attributes ownership, management of co-management, and other special rights, according to the new methodology of Jacobsen et al. (2020). The Indigenous land dataset is also combined (intersected) with forest cover information from the Forests of Australia (2018) dataset.​ The resulting output dataset provides information on the Indigenous estate for both land and forest.\r \r This dataset is updated every five years for the Australia's State of the Forests Report Series. Further information can be found on the Forests Australia website: http://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018

  4. d

    Mineral Resources Data System

    • search.dataone.org
    • data.wu.ac.at
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). Mineral Resources Data System [Dataset]. https://search.dataone.org/view/3e55bd49-a016-4172-ad78-7292618a08c2
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    USGS Science Data Catalog
    Authors
    U.S. Geological Survey
    Area covered
    Variables measured
    ORE, REF, ADMIN, MODEL, STATE, COUNTY, DEP_ID, GANGUE, MAS_ID, REGION, and 29 more
    Description

    Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.

  5. Soil and Landscape Grid Digital Soil Property Maps for South Australia (3"...

    • researchdata.edu.au
    • data.csiro.au
    datadownload
    Updated Mar 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soil and Landscape Grid Digital Soil Property Maps for South Australia (3" resolution) [Dataset]. https://researchdata.edu.au/soil-landscape-grid-3-resolution/1325410
    Explore at:
    datadownloadAvailable download formats
    Dataset updated
    Mar 19, 2018
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Nathan Odgers; Ross Searle; Jan Rowland; David Maschmedt; Karen Holmes; Craig Liddicoat; Searle, Ross
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These products are derived from disaggregation of legacy soil mapping in the agricultural zone of South Australia using the DSMART tool (Odgers et al. 2014a); produced for the Soil and Landscape Grid of Australia Facility. There are 10 soil attribute products available from the Soil Facility: Available Water Capacity (AWC); Bulk Density - Whole Earth (BDw); Cation Exchange Capacity (CEC); Clay (CLY); Coarse Fragments (CFG); Electrical Conductivity (ECD); Organic Carbon (SOC); pH - CaCl2( pHc); Sand (SND); Silt (SLT).

    Each soil attribute product is a collection of 6 depth slices (except for effective depth and total depth). Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the specifications of the GlobalSoilMap.

    The DSMART tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes and corresponding soil properties. Legacy mapping was performed at 1:50,000 and 1:100,000 scales to delineate associated soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making.

    Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) kriging based on site data by Viscarra Rossel et al. (2014). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. 2014).

    Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications. Lineage: The soil attribute maps are generated using novel spatial modelling and digital soil mapping techniques to disaggregate legacy soil mapping.

    Legacy soil mapping: Polygon-based soil mapping for South Australia’s agricultural zone was developed via SA’s State Land and Soil Mapping Program (DEWNR 2014, Hall et al. 2009). Sixty one soil classes (termed ‘subgroup soils’) have been defined to capture the range of variation in soil profiles across this area. While legacy soil mapping does not explicitly map the distribution of these soil classes, estimates of their percentage composition and associated soil properties are available for each soil landscape map unit (polygon).

    Disaggregation of soil classes: The DSMART algorithm (version 1, described in Odgers et al. 2014) was used to produce fine-resolution raster predictions for the probability of occurrence of each soil class. This uses random virtual sampling within each map unit (with sampling weighted by the expected proportions of each soil class) to build predictions for the distribution of soil classes based on relationships with environmental covariate layers (e.g. elevation, terrain attributes, climate, remote sensing vegetation indices, radiometrics). The algorithm was run 100 times then averaged to create probabilistic estimates for soil class spatial distributions.

    Soil property predictions: The PROPR algorithm (Odgers et al. 2015b) was used to generate soil property maps (and their associated uncertainty) using reference soil property data and the soil class probability maps create through the above DSMART disaggregation step.

    South Australia’s national- or ASRIS-format soil mapping was used to provide reference soil properties. This dataset was previously developed to meet the specifications of McKenzie et al. (2012) and provides expert soil surveyor estimates for map unit area composition and representative profile properties of approximately 1500 regional variants of the original sixty one ‘subgroup soil’ classes. Equal area depth smoothing splines were applied to the regional variant profile data to obtain property values at the specified GlobalSoilMap depth intervals. Then area-weighted soil property averages were calculated for each subgroup soil class. This process is documented further in Odgers et al. (2015a).

  6. u

    Forest ownership in the conterminous United States circa 2017: distribution...

    • agdatacommons.nal.usda.gov
    bin
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emma M. Sass; Brett J. Butler; Marla A. Markowski-Lindsay (2025). Forest ownership in the conterminous United States circa 2017: distribution of eight ownership types - geospatial dataset [Dataset]. http://doi.org/10.2737/RDS-2020-0044
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Forest Service Research Data Archive
    Authors
    Emma M. Sass; Brett J. Butler; Marla A. Markowski-Lindsay
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    This geospatial dataset depicts ownership patterns of forest land across the conterminous United States. Eight ownership categories are modeled, including three public ownerships: federal, state, and local; four private categories: family, corporate, Timber Investment Management Organization (TIMO) and Real Estate Investment Trust (REIT), and other private (including conservation organizations and unincorporated associations); and Native American tribal land. The data are modeled from Forest Inventory and Analysis (FIA) points from 2012-2017 and the most up-to-date publicly available boundaries of federal, state, and tribal lands.These data are intended to support national- and regional-scale planning and analyses involving spatially explicit distribution and patterns of forest ownership. These data are not intended or recommended for subregional- or local-scale planning or analyses. Map accuracy varies between ownership categories and regions, limiting its use for local or specific decision making.A corresponding Research Map (RMAP) has been produced to cartographically portray this dataset (Sass et al. 2020; https://doi.org/10.2737/NRS-RMAP-11).

    Three previous data publications also model forest ownership types across the conterminous United States. Nelson et al. (2010) depicts public and private forest ownership, and differentiates corporate from other private ownership. Hewes et al. (2014) differentiates three public ownership categories (federal, state, and local) and three private ownership categories (family, corporate, and other private). Hewes et al. (2017) depicts these six categories as well as tribal lands. This dataset is updated with recently available data and differentiates a new private ownership category: Timber Investment Management Organizations (TIMOs) and Real Estate Investment Trusts (REITs), which are presented as a combined category.

  7. Soil and Landscape Grid National Soil Attribute Maps - Clay (3" resolution)...

    • data.csiro.au
    • researchdata.edu.au
    • +2more
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael Viscarra Rossel; Charlie Chen; Mike Grundy; Ross Searle; Nathan Odgers; Karen Holmes; Ted Griffin; Craig Liddicoat; Darren Kidd; David Clifford (2024). Soil and Landscape Grid National Soil Attribute Maps - Clay (3" resolution) - Release 1 [Dataset]. http://doi.org/10.4225/08/546EEE35164BF
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Raphael Viscarra Rossel; Charlie Chen; Mike Grundy; Ross Searle; Nathan Odgers; Karen Holmes; Ted Griffin; Craig Liddicoat; Darren Kidd; David Clifford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2013
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Queensland Department of Science, Information Technology, Innovation and the Arts (DSITIA)
    Geoscience Australia
    South Australia Department of Environment, Water and Natural Resources
    NSW Office of Environment and Heritage
    Northern Territory Department of Land Resource Management
    University of Sydney
    Tasmania Department Primary Industries, Parks, Water and Environment
    Victoria Department of Environment and Primary Industries
    Western Australia Department of Agriculture and Food
    Description

    This is Version 1 of the Australian Soil Clay product of the Soil and Landscape Grid of Australia.

    The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).

    These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia.

    Attribute Definition: 2 μm mass fraction of the less than 2 mm soil material determined using the pipette method; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.

    Lineage: The National Soil Attribute Maps are generated by combining the best available digital soil mapping to calculate a variance weighted mean for each pixel. Two DSM methods have been utilised across and in various parts of Australia, these being:

    1) Decision trees with piecewise linear models with kriging of residuals developed from soil site data across Australia. (Viscarra Rossel et al., 2015a); 2) Disaggregation of existing polygon soil mapping using DSMART (Odgers et al. 2015a).

    Version 1 of the National Digital Soil Property Maps combines mapping from the:

    1) Australia-wide three-dimensional Digital Soil Property Maps; 2) Western Australia Polygon Disaggregation Maps; 3) South Australian Agricultural Areas Polygon Disaggregation Maps; 4) Tasmanian State-wide DSM Maps.

    These individual mapping products are also available in the Data Access Portal. Please refer to these individual products for more detail on the DSM methods used.

  8. Annual dynamics of global land cover and its long-term changes from 1982 to...

    • doi.pangaea.de
    • service.tib.eu
    zip
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Han Liu; Peng Gong; Shunlin Liang; Jie Wang; Nicholas Clinton; Yuqi Bai (2020). Annual dynamics of global land cover and its long-term changes from 1982 to 2015, link to GeoTIFF files [Dataset]. http://doi.org/10.1594/PANGAEA.913496
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    PANGAEA
    Authors
    Han Liu; Peng Gong; Shunlin Liang; Jie Wang; Nicholas Clinton; Yuqi Bai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Land cover is the physical evidence on the surface of the Earth. As the cause and result of global environmental change, land cover change (LCC) influences the global energy balance and biogeochemical cycles. Continuous and dynamic monitoring of global LC is urgently needed. Effective monitoring and comprehensive analysis of LCC at the global scale are rare. With the latest version of GLASS (The Global Land Surface Satellite) CDRs (Climate Data Records) from 1982 to 2015, we built the first record of 34-year long annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the Google Earth Engine (GEE) platform. Compared to earlier global LC products, GLASS-GLC is characterized by high consistency, more detailed, and longer temporal coverage. The average overall accuracy for the 34 years each with 7 classes, including cropland, forest, grassland, shrubland, tundra, barren land, and snow/ice, is 82.81 % based on 2431 test sample units. We implemented a systematic uncertainty analysis and carried out a comprehensive spatiotemporal pattern analysis. Significant changes at various scales were found, including barren land loss and cropland gain in the tropics, forest gain in northern hemisphere and grassland loss in Asia, etc. A global quantitative analysis of human factors showed that the average human impact level in areas with significant LCC was about 25.49 %. The anthropogenic influence has a strong correlation with the noticeable vegetation gain, especially for forest. Based on GLASS-GLC, we can conduct long-term LCC analysis, improve our understanding of global environmental change, and mitigate its negative impact. GLASS-GLC will be further applied in Earth system modeling to facilitate research on global carbon and water cycling, vegetation dynamics, and climate change. This GLASS-GLC data set is related to the paper at doi:10.5194/essd-2019-23. It consists of one readme file and 34 GeoTIFF files of annual 5 km global maps from 1982 to 2015 in a WGS 84 projection.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
US Geological Survey (USGS) Gap Analysis Program (GAP) (2017). Protected Areas Database of the United States (PAD-US) [Dataset]. https://search.dataone.org/view/0459986b-9a0e-41d9-9997-cad0fbea9c4e

Protected Areas Database of the United States (PAD-US)

Explore at:
Dataset updated
Oct 26, 2017
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Authors
US Geological Survey (USGS) Gap Analysis Program (GAP)
Time period covered
Jan 1, 2005 - Jan 1, 2016
Area covered
United States,
Variables measured
Shape, Access, Des_Nm, Des_Tp, Loc_Ds, Loc_Nm, Agg_Src, GAPCdDt, GAP_Sts, GIS_Src, and 20 more
Description

The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

Search
Clear search
Close search
Google apps
Main menu