42 datasets found
  1. g

    Landsat Land Cover Map of Northern Alaska (Muller et al. 1999) - Datasets -...

    • arcticatlas.geobotany.org
    Updated Feb 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Landsat Land Cover Map of Northern Alaska (Muller et al. 1999) - Datasets - Alaska Arctic Geoecological Atlas [Dataset]. https://arcticatlas.geobotany.org/catalog/dataset/landsat-land-cover-map-of-northern-alaska-muller-et-al-1999
    Explore at:
    Dataset updated
    Feb 15, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic, Alaska, Arctic Alaska
    Description

    This map was created for the US National Science Foundation Land-Atmosphere-Ice Interactions (LAII) Flux Study and the Arctic Transitions in the Land-Atmosphere System (ATLAS) Study (OPP-9318530 and OPP-9415554). The map covers all of northern Alaska, from the Brooks Range divide to the coast. It is a raster (tif) map, with 50 m pixels, and 9 land cover categories. It is based on an unsupervised classification of a Landsat Multispectral Scanner (MSS) composite created by the National Mapping Division, U.S. Geological Survey EROS data center, Anchorage, Alaska. Geobotanical maps and earlier Landsat-derived maps of the region were used to interpret the spectral classes. References Muller, S. V., A. E. Racoviteanu, and D. A. Walker. 1999. Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. International Journal of Remote Sensing 20:2921-2946.

  2. a

    Jefferson County Parcels

    • data-jeffco-al.opendata.arcgis.com
    Updated Aug 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jefferson County Commission, AL (2016). Jefferson County Parcels [Dataset]. https://data-jeffco-al.opendata.arcgis.com/datasets/jefferson-county-parcels/geoservice
    Explore at:
    Dataset updated
    Aug 24, 2016
    Dataset authored and provided by
    Jefferson County Commission, AL
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Map displaying Jefferson County Parcel data. This map is used by several of the open data apps

  3. g

    Land cover map of the Arctic National Wildlife Refuge (Walker et al. 1982) -...

    • arcticatlas.geobotany.org
    Updated Nov 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Land cover map of the Arctic National Wildlife Refuge (Walker et al. 1982) - Datasets - Alaska Arctic Geoecological Atlas [Dataset]. https://arcticatlas.geobotany.org/catalog/dataset/land-cover-map-of-the-arctic-national-wildlife-refuge-walker-et-al-1982
    Explore at:
    Dataset updated
    Nov 24, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic National Wildlife Refuge, Arctic Alaska, Arctic, Alaska
    Description

    The Landsat-assisted environmental mapping of the northern coastal plain of the Arctic National Wildlife Refuge, Alaska was funded by the US Fish and Wildlife Service and the US Geological Survey and published by the Cold Regions Research and Experimental Laboratory (CRREL) as input to the Environmental Impact Statement required under Section 1002 of the Alaska National Interest Land Conservation Act (ANILCA) of 1980. The map was published at 1:250,000 scale, with 12 land cover categories (Walker et al. 1982). The report is divided into two parts. The first is devoted to the land cover map with detailed descriptions of the mapping methods and legend. The second part is a description of the study area, which focuses on five primary terrain types: thaw-lake plains, hilly coastal plains, foothills, mountainous terrain, and river floodplains. Topography, landforms, soils and vegetation are described for each terrain type, and mapped land cover units summarized for each. The vegetation mapping of the coastal plain (the 1002 area) was updated in 1996, with a 30-m pixel resolution Landsat TM-based map, with 17 land cover classes (4 non-vegetated) (Jorgenson et al. 1994). See Also Vegetation Mapping of the Arctic Refuge Coastal Plain, Jorgenson et al. 1996 References Jorgenson, J. C., P. E. Joria, T. R. McCabe, B. R. Reitz, M. K. Raynolds, M. Emers, M. A. Wilms. 1994. Users guide for the land-cover map of the coastal plain of the Arctic National Wildlife Refuge. U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA. Walker, D. A., W. Acevedo, K. R. Everett, L. Gaydos, J. Brown, and P. J. Webber. 1982. Landsat-assisted environmental mapping in the Arctic National Wildlife Refuge, Alaska. CRREL Report 82-27.

  4. d

    EnviroAtlas - Birmingham, AL - Land Cover by Block Group

    • catalog.data.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Birmingham, AL - Land Cover by Block Group [Dataset]. https://catalog.data.gov/dataset/enviroatlas-birmingham-al-land-cover-by-block-group2
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Birmingham, Alabama
    Description

    This EnviroAtlas dataset describes the breakdown of the land cover classes with each Census Block Group. In this community, forest is defined as Trees & Forest, and Woody Wetlands. Green space is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. Wetlands are defined as Woody Wetlands and Emergent Wetlands. This dataset also includes the area per capita for each block group for some land cover types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. u

    Landscape Change Monitoring System (LCMS) Alaska Annual Change

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +2more
    bin
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Alaska Annual Change [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_Southeast_Alaska_Annual_Change_Image_Service_/25974103
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It supplies LCMS Change classes for each year that are a refinement of the modeled LCMS Change classes (Slow Loss, Fast Loss, and Gain) and provide information on the cause of landscape change. See additional information about Change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Helmer, E. H., Ramos, O., del MLopez, T., Quinonez, M., and Diaz, W. (2002). Mapping the forest type and Land Cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, (Vol. 38, Issue 3/4, pp. 165-183)Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J. (2023). Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2124-2134)Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual Land Cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261Pesaresi, M. and Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EAStehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. In International Journal of Remote Sensing (Vol. 35, pp. 4923-4939). https://doi.org/10.1080/01431161.2014.930207USDA National Agricultural Statistics Service Cropland Data Layer (2023). Published crop-specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/ (accessed 2024). USDA-NASS, Washington, DC.U.S. Geological Survey (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mU.S. Geological Survey (2023). Landsat Collection 2 Known Issues, accessed March 2023 at https://www.usgs.gov/landsat-missions/landsat-collection-2-known-issuesWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAYang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., and Xian, G. (2018). A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies (https://www.sciencedirect.com/science/article/abs/pii/S092427161830251X), (pp. 108-123)Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of Land Cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011 This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  6. d

    Atlas of the Biosphere

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olejniczak, Nicholas; Foley, Jonathan (2014). Atlas of the Biosphere [Dataset]. https://search.dataone.org/view/Atlas_of_the_Biosphere.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Olejniczak, Nicholas; Foley, Jonathan
    Time period covered
    Jan 1, 1995
    Area covered
    Earth
    Description

    The Atlas of the Biosphere is a product of the Center for Sustainability and the Global Environment (SAGE), part of the Gaylord Nelson Institute for Environmental Studies at the University of Wisconsin - Madison. The goal is to provide more information about the environment, and human interactions with the environment, than any other source.

    The Atlas provides maps of an ever-growing number of environmental variables, under the following categories:

    Human Impacts (Humans and the environment from a socio-economic perspective; i.e., Population, Life Expectancy, Literacy Rates);

    Land Use (How humans are using the land; i.e., Croplands, Pastures, Urban Lands);

    Ecosystems (The natural ecosystems of the world; i.e., Potential Vegetation, Temperature, Soil Texture); and

    Water Resources (Water in the biosphere; i.e., Runoff, Precipitation, Lakes and Wetlands).

    Map coverages are global and regional in spatial extent. Users can download map images (jpg) and data (a GIS grid of the data in ESRI ArcView Format), and can view metadata online.

  7. C

    GIS Mapping files

    • data.birminghamal.gov
    geojson, html, shp
    Updated Jan 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Birmingham Planning & Engineering (2019). GIS Mapping files [Dataset]. https://data.birminghamal.gov/dataset/gis-mapping-files
    Explore at:
    geojson, shp, html, geojson(1853069), geojson(1539369), shp(444998), shp(377381)Available download formats
    Dataset updated
    Jan 9, 2019
    Dataset authored and provided by
    Birmingham Planning & Engineering
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Planning, Engineering & Permitting - GIS Mapping files

  8. Soil and Landscape Grid Digital Soil Property Maps for South Australia (3"...

    • data.csiro.au
    • researchdata.edu.au
    Updated Mar 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Liddicoat; Karen Holmes; David Maschmedt; Jan Rowland; Ross Searle; Nathan Odgers (2018). Soil and Landscape Grid Digital Soil Property Maps for South Australia (3" resolution) [Dataset]. http://doi.org/10.4225/08/5aaf39ed26044
    Explore at:
    Dataset updated
    Mar 19, 2018
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Craig Liddicoat; Karen Holmes; David Maschmedt; Jan Rowland; Ross Searle; Nathan Odgers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    University of Sydney
    South Australia Department of Environment, Water and Natural Resources
    Description

    These products are derived from disaggregation of legacy soil mapping in the agricultural zone of South Australia using the DSMART tool (Odgers et al. 2014a); produced for the Soil and Landscape Grid of Australia Facility. There are 10 soil attribute products available from the Soil Facility: Available Water Capacity (AWC); Bulk Density - Whole Earth (BDw); Cation Exchange Capacity (CEC); Clay (CLY); Coarse Fragments (CFG); Electrical Conductivity (ECD); Organic Carbon (SOC); pH - CaCl2( pHc); Sand (SND); Silt (SLT).

    Each soil attribute product is a collection of 6 depth slices (except for effective depth and total depth). Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the specifications of the GlobalSoilMap.

    The DSMART tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes and corresponding soil properties. Legacy mapping was performed at 1:50,000 and 1:100,000 scales to delineate associated soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making.

    Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) kriging based on site data by Viscarra Rossel et al. (2014). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. 2014).

    Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications. Lineage: The soil attribute maps are generated using novel spatial modelling and digital soil mapping techniques to disaggregate legacy soil mapping.

    Legacy soil mapping: Polygon-based soil mapping for South Australia’s agricultural zone was developed via SA’s State Land and Soil Mapping Program (DEWNR 2014, Hall et al. 2009). Sixty one soil classes (termed ‘subgroup soils’) have been defined to capture the range of variation in soil profiles across this area. While legacy soil mapping does not explicitly map the distribution of these soil classes, estimates of their percentage composition and associated soil properties are available for each soil landscape map unit (polygon).

    Disaggregation of soil classes: The DSMART algorithm (version 1, described in Odgers et al. 2014) was used to produce fine-resolution raster predictions for the probability of occurrence of each soil class. This uses random virtual sampling within each map unit (with sampling weighted by the expected proportions of each soil class) to build predictions for the distribution of soil classes based on relationships with environmental covariate layers (e.g. elevation, terrain attributes, climate, remote sensing vegetation indices, radiometrics). The algorithm was run 100 times then averaged to create probabilistic estimates for soil class spatial distributions.

    Soil property predictions: The PROPR algorithm (Odgers et al. 2015b) was used to generate soil property maps (and their associated uncertainty) using reference soil property data and the soil class probability maps create through the above DSMART disaggregation step.

    South Australia’s national- or ASRIS-format soil mapping was used to provide reference soil properties. This dataset was previously developed to meet the specifications of McKenzie et al. (2012) and provides expert soil surveyor estimates for map unit area composition and representative profile properties of approximately 1500 regional variants of the original sixty one ‘subgroup soil’ classes. Equal area depth smoothing splines were applied to the regional variant profile data to obtain property values at the specified GlobalSoilMap depth intervals. Then area-weighted soil property averages were calculated for each subgroup soil class. This process is documented further in Odgers et al. (2015a).

  9. Data from: SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa,...

    • data.nasa.gov
    • search.dataone.org
    • +7more
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000 [Dataset]. https://data.nasa.gov/dataset/safari-2000-avhrr-derived-land-surface-temperature-maps-africa-1995-2000-d7c59
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes, vegetation water stress, and soil moisture. A daily, day and night, LST data set for continental Africa, including Madagascar, was derived from Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC; 4 km resolution) data for the 6-year lifetime of the NOAA-14 satellite (from 1995 to 2000) using a modified version of the Global Inventory Mapping and Monitoring System (GIMMS) (Tucker et al., 1994). The data were projected into Albers Equal Area and aggregated to 8 km spatial resolution. The data were cloud-filtered with CLAVR-1 algorithm (Stowe et al., 1999). The LST values were estimated with a split-window technique (Ulivieri et al., 1994) that takes advantage of differential absorption of the thermal infrared signal in bands 4 and 5. The emissivity of the surface was generated using a land cover classification map (Hansen et al., 2000) combined with the FAO soil map of Africa (FAO-UNESCO, 1977) and additional maps of tree, herbaceous, and bare soil percent cover (DeFries et al., 2000). Collateral products include cloud mask, time-of-scan, latitude and longitude, and land/water mask files.The data are in flat binary files. Each data file contains 1152 columns and 1152 rows, in signed integer format (2 bytes), with 8 km by 8 km spatial resolution. A unique map exists for each day and each night of the 6-year NOAA-14 lifetime. The data are best used to infer broad temporal and spatial trends rather than pixel-by-pixel values.

  10. Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3"...

    • researchdata.edu.au
    • data.csiro.au
    datadownload
    Updated Mar 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan Odgers; Ted Griffin; Karen Holmes (2018). Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3" resolution) [Dataset]. http://doi.org/10.4225/08/5AAF364C54CCF
    Explore at:
    datadownloadAvailable download formats
    Dataset updated
    Mar 19, 2018
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Nathan Odgers; Ted Griffin; Karen Holmes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the Soil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT).

    Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap.

    The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making.

    Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep).

    Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications. Lineage: The soil attribute maps are generated using novel spatial modelling and digital soil mapping techniques to disaggregate legacy soil mapping.

    Legacy soil mapping: Polygon-based soil mapping for Western Australia’s agricultural zone was developed via WA’s Department of Agriculture and Food (Schoknecht et al., 2004). Seventy-three soil classes (termed ‘WA soil groups’ Schoknecht and Pathan, 2013) have been defined to capture the range of variation in soil profiles across this area. While legacy soil mapping does not explicitly map the distribution of these soil classes, estimates of their percentage composition and associated soil properties are available for each soil landscape map unit (polygon).

    Disaggregation of soil classes: The DSMART algorithm (version 1, described in Odgers et al. 2014) was used to produce fine-resolution raster predictions for the probability of occurrence of each soil class. This uses random virtual sampling within each map unit (with sampling weighted by the expected proportions of each soil class) to build predictions for the distribution of soil classes based on relationships with environmental covariate layers (e.g. elevation, terrain attributes, climate, remote sensing vegetation indices, radiometrics). The algorithm was run 100 times then averaged to create probabilistic estimates for soil class spatial distributions.

    Soil property predictions: The PROPR algorithm (Odgers et al. 2015) was used to generate soil property maps (and their associated uncertainty) using reference soil property data and the soil class probability maps create through the above DSMART disaggregation step.

    Western Australia’s expert defined typical range of soil properties by soil class was used to provide reference soil properties to PROPR. These estimates were made separately for each physiographic zone across WA, and are based on available profile data and surveyor experience. Uncertainty bounds were determined by the minimum and maximum soil properties at the ‘qualified soil group’ level, and the property value of the most common soil in the map unit was used to define the typical soil property. This methodology was previously developed to meet the specifications of McKenzie et al. (2012) and provides expert soil surveyor estimates for map unit area composition and representative profile properties. Depth averaging was applied to the regional variant profile data to obtain property values at the specified GlobalSoilMap depth intervals. Then area-weighted soil property averages were calculated for each subgroup soil class. This process is documented further in Odgers et al. (Submitted).

  11. U

    Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover)

    • data.usgs.gov
    • search.dataone.org
    • +1more
    Updated Sep 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Jacobi; Jonathan Price; Lucas Fortini; Samuel Gon; Paul Berkowitz (2024). Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover) [Dataset]. http://doi.org/10.5066/F7DB80B9
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    James Jacobi; Jonathan Price; Lucas Fortini; Samuel Gon; Paul Berkowitz
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2007 - 2012
    Area covered
    Hawaii
    Description

    While there have been many maps produced that depict vegetation for the state of Hawai‘i only a few of these display land cover for all of the main Hawaiian Islands, and most of those that were created before the year 2000 have very generalized units or are somewhat inaccurate as a result of more recent land use changes or due to poor resolution (both spatial and spectral) in the imagery that was used to produce the map. Some of the more detailed and accurate maps include the Hawai‘i GAP Analysis (HI-GAP) Land Cover map (Gon et al. 2006), the NOAA C-CAP Land Cover map (NOAA National Ocean Service Coastal Services Center 2012), and the more recently released Hawai‘i LANDFIRE EVT Land Cover map (U.S. Geological Survey 2009). However, all of these maps as originally produced were not considered to be detailed enough, current enough, or had other classification issues that would not allow them to be used as the primary base for the Hawai‘i Carbon Assessment. For the Hawai‘i Carbon Ass ...

  12. g

    Kuparuk River Basin Vegetation Map (Muller et al. 1998) - Datasets - Alaska...

    • arcticatlas.geobotany.org
    Updated Nov 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Kuparuk River Basin Vegetation Map (Muller et al. 1998) - Datasets - Alaska Arctic Geoecological Atlas [Dataset]. https://arcticatlas.geobotany.org/catalog/dataset/kuparuk-river-basin-vegetation-map-muller-et-al-1998
    Explore at:
    Dataset updated
    Nov 24, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska, Arctic
    Description

    The vegetation of the Kuparuk River watershed was mapped for several US National Science Foundation projects, including the Arctic System Science Flux Study and the Long-Term Ecological Research program (Muller et al. 1998). The Kuparuk Basin map is a raster (tif) map, with 50-m pixels, and 8 land cover categories. The boundaries of the map form a rectangle that encompasses the entire Kuparuk River watershed, from the headwaters on the north side of the Brooks Range to the Beaufort Sea coast. The map is based on a modified unsupervised classification of a portion of a Landsat Multispectral Scanner (MSS) composite created by the National Mapping Division, U.S. Geological Survey EROS data center, Anchorage, Alaska. Geobotanical maps and earlier Landsat-derived maps of the region were used for supplementary information to interpret the spectral classes. Go to Website Link :: Toolik Arctic Geobotanical Atlas below for details on legend units, photos of map units and plant species, glossary, bibliography and links to ground data. Map Themes: Elevation, Hydrology, Landscape, Landsat MSS False-Color Infrared, Vegetation References Auerbach, N. A., and D. A. Walker. 1995. Preliminary Vegetation Map, Kuparuk River Basin, Alaska: A Landsat-Derived Classification, Joint Facility for Regional Ecosystem Analysis, Institute of Arctic and Alpine Research. University of Colorado, Boulder. Muller, S. V., Walker, D. A., Nelson, F. E., Auerback, N. A., Bockheim, J. G., Guyer, S., & D. Sherba. 1998. Accuracy assessment of a land-cover map of the Kuparuk river basin, Alaska: considerations for remote regions. Photogrammetric Engineering and Remote Sensing, 64(6): 619-628.

  13. p

    Current and projected Land use maps at 100 m for Belgium - Dataset - CKAN

    • dataportal.ponderful.eu
    Updated Oct 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Current and projected Land use maps at 100 m for Belgium - Dataset - CKAN [Dataset]. https://dataportal.ponderful.eu/dataset/land-use-maps-100m
    Explore at:
    Dataset updated
    Oct 18, 2022
    Area covered
    Belgium
    Description

    Under various scenarios, land use changes in Belgium are simulated at 100-meter resolution. Three SSP-RCP scenarios were used to model the land use trends in the present (2018) and the year 2050 at the national level in Belgium. Key inputs to the model include regional land use demand, quantification of the suitability of grid cells for different land use types, and a reference land cover map. The 100-meter-resolution baseline land use map of Belgium was sourced from Coordinated Information on the European Environment (CORINE). The classification systems of CORINE is different from LUH2. To make these datasets comparable for land use simulations, we performed reclassification based on the guidelines provided by Pérez-Hoyos et al. (2012); Dong et al. (2018); Liao et al. (2020) to unify the land use classes, except water, into six general categories: 1) urban, 2) cropland, 3) pasture, 4) forestry, 5) bare/sparse vegetation, and 6) undefined.

  14. d

    Protected Areas Database of the United States (PAD-US)

    • search.dataone.org
    • datadiscoverystudio.org
    • +1more
    Updated Oct 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Geological Survey (USGS) Gap Analysis Program (GAP) (2017). Protected Areas Database of the United States (PAD-US) [Dataset]. https://search.dataone.org/view/0459986b-9a0e-41d9-9997-cad0fbea9c4e
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    US Geological Survey (USGS) Gap Analysis Program (GAP)
    Time period covered
    Jan 1, 2005 - Jan 1, 2016
    Area covered
    United States,
    Variables measured
    Shape, Access, Des_Nm, Des_Tp, Loc_Ds, Loc_Nm, Agg_Src, GAPCdDt, GAP_Sts, GIS_Src, and 20 more
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

  15. U

    Barrier island habitat map and vegetation survey, Dauphin Island, AL, 2015

    • data.usgs.gov
    • search.dataone.org
    • +3more
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Enwright; Sinead Borchert; Richard Day; Laura Feher; Michael Osland; Lei Wang; Hongqing Wang (2021). Barrier island habitat map and vegetation survey, Dauphin Island, AL, 2015 [Dataset]. http://doi.org/10.5066/F7513WPC
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Nicholas Enwright; Sinead Borchert; Richard Day; Laura Feher; Michael Osland; Lei Wang; Hongqing Wang
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Nov 16, 2015 - Dec 16, 2015
    Area covered
    Dauphin Island
    Description

    This dataset includes barrier island land cover types collected from mid-November 2015 to mid-December 2015 along randomly placed transects at seven sites throughout the east end of Dauphin Island. Specifically, this data collection included characterizing land cover types and measuring horizontal position and elevation. We characterized plant community composition and structure for a subset of these points (see Vegetation Survey Data Table). This work was conducted through a joint effort by the State of Alabama, the U.S. Geological Survey, and the U.S. Army Corps of Engineers to evaluate the feasibility of various restoration alternatives and how specific alternatives might increase the resiliency and sustainability of Dauphin Island. The overarching goal of the aforementioned effort is to preserve and enhance the ecological functions and values of the island. This product provides a powerful tool for tracking changes to barrier island habitats over time. This data release inclu ...

  16. C

    Redlining Maps from the Home Owners Loan Corporation, 1937

    • data.wprdc.org
    • gimi9.com
    geojson, html, jpeg +1
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Western Pennsylvania Regional Data Center (2025). Redlining Maps from the Home Owners Loan Corporation, 1937 [Dataset]. https://data.wprdc.org/dataset/redlining-maps-from-the-home-owners-loan-corporation
    Explore at:
    zip(10818554), html, jpeg(13882165), zip(12025), zip(38339897), geojson(39108), zip(7807), zip(12934532), jpeg(46615911), zip(75315), jpeg(6317290), geojson(269553), zip(154680053), jpeg(5141992), geojson(46444), zip(24301995), zip(7509), jpeg(10667368), geojson(60598), zip(17077497), zip(10561768), geojson(593066), zip(31784339), zip(45384487), zip(7566), geojson(54280)Available download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Western Pennsylvania Regional Data Center
    License

    http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa

    Description

    Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers,

    "HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."

    Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. "

    HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas."

    These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality."

    Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.

  17. u

    Landscape Change Monitoring System (LCMS) Alaska Annual Landcover

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +2more
    bin
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Alaska Annual Landcover [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_Southeast_Alaska_Annual_Landcover_Image_Service_/25973452
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled Land Cover classes for each year. See additional information about Land Cover in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Helmer, E. H., Ramos, O., del MLopez, T., Quinonez, M., and Diaz, W. (2002). Mapping the forest type and Land Cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, (Vol. 38, Issue 3/4, pp. 165-183)Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J. (2023). Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2124-2134)Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual Land Cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261Pesaresi, M. and Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EAStehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. In International Journal of Remote Sensing (Vol. 35, pp. 4923-4939). https://doi.org/10.1080/01431161.2014.930207USDA National Agricultural Statistics Service Cropland Data Layer (2023). Published crop-specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/ (accessed 2024). USDA-NASS, Washington, DC.U.S. Geological Survey (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mU.S. Geological Survey (2023). Landsat Collection 2 Known Issues, accessed March 2023 at https://www.usgs.gov/landsat-missions/landsat-collection-2-known-issuesWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAYang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., and Xian, G. (2018). A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies (https://www.sciencedirect.com/science/article/abs/pii/S092427161830251X), (pp. 108-123)Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of Land Cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011 This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  18. d

    Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3"...

    • data.gov.au
    html, plain, tiff +1
    Updated Mar 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Commonwealth Scientific and Industrial Research Organisation (2018). Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3" resolution) [Dataset]. https://data.gov.au/dataset/ds-dap-csiro%3A10856
    Explore at:
    tiff, xml, html, plainAvailable download formats
    Dataset updated
    Mar 18, 2018
    Dataset provided by
    The Commonwealth Scientific and Industrial Research Organisation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia, Western Australia
    Description

    These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from …Show full descriptionThese are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the Soil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications. The metadata and files (if any) are available to the public.

  19. Landscape Change Monitoring System (LCMS) Hawaii Annual Landcover

    • agdatacommons.nal.usda.gov
    • hub.arcgis.com
    • +1more
    bin
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Hawaii Annual Landcover [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_Hawaii_Annual_Landcover_Image_Service_/27886866
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hawaii
    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land cover classes for each year. LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades. Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  20. Z

    Data from: Agricultural land use (vector) : National-scale crop type maps...

    • data.niaid.nih.gov
    • openagrar.de
    • +1more
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blickensdörfer, Lukas (2025). Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10619782
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    Schwieder, Marcel
    Tetteh, Gideon Okpoti
    Erasmi, Stefan
    Gocht, Alexander
    Blickensdörfer, Lukas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains maps of the main classes of agricultural land use (dominant crop types and other land use types) in Germany, which have been produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015). The final post-processing step comprises the aggregation of the gridded data to homogeneous objects (fields) based on the approach that is described in Tetteh et al. (2021) and Tetteh et al. (2023).

    The maps are available in FlatGeobuf format, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the provided URL to the datasets (right click on the respective data set --> “copy link address”). By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    Mailing list

    If you do not want to miss the latest updates, please enroll to our mailing list.

    References:Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Tetteh, G.O., Gocht, A., Erasmi, S., Schwieder, M., & Conrad, C. (2021). Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 9, 116702-116719.

    Tetteh, G.O., Schwieder, M., Erasmi, S., Conrad, C., & Gocht, A. (2023). Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2021). Landsat Land Cover Map of Northern Alaska (Muller et al. 1999) - Datasets - Alaska Arctic Geoecological Atlas [Dataset]. https://arcticatlas.geobotany.org/catalog/dataset/landsat-land-cover-map-of-northern-alaska-muller-et-al-1999

Landsat Land Cover Map of Northern Alaska (Muller et al. 1999) - Datasets - Alaska Arctic Geoecological Atlas

Explore at:
Dataset updated
Feb 15, 2021
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Arctic, Alaska, Arctic Alaska
Description

This map was created for the US National Science Foundation Land-Atmosphere-Ice Interactions (LAII) Flux Study and the Arctic Transitions in the Land-Atmosphere System (ATLAS) Study (OPP-9318530 and OPP-9415554). The map covers all of northern Alaska, from the Brooks Range divide to the coast. It is a raster (tif) map, with 50 m pixels, and 9 land cover categories. It is based on an unsupervised classification of a Landsat Multispectral Scanner (MSS) composite created by the National Mapping Division, U.S. Geological Survey EROS data center, Anchorage, Alaska. Geobotanical maps and earlier Landsat-derived maps of the region were used to interpret the spectral classes. References Muller, S. V., A. E. Racoviteanu, and D. A. Walker. 1999. Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. International Journal of Remote Sensing 20:2921-2946.

Search
Clear search
Close search
Google apps
Main menu