Facebook
TwitterAlaska had the highest male to female ratio in the United States in 2020, with ***** men for every 100 women. The male to female ratio was lowest in the District of Columbia, with **** men for every 100 women. The final frontier Alaska, which was purchased from the Russian Empire in 1867, is the largest state in the U.S. and one of the newest states, having been admitted to the U.S. in 1959. Although oil production dominates the economy, Alaska has a very high poverty rate and consistently has the highest unemployment rate in the country. It’s a man’s world Alaska is one of 10 states in the U.S. that has more men than women. The male to female ratio in the United States as a whole is about even, but as the population ages, there tend to be more females than males. Even though the sex ratio in the U.S. is almost one to one, a little more than ** percent of all females participated in the labor force in 2021, compared with **** percent of men.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Alaska by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Alaska. The dataset can be utilized to understand the population distribution of Alaska by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Alaska. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Alaska.
Key observations
Largest age group (population): Male # 30-34 years (30,725) | Female # 30-34 years (27,517). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Alaska Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Alaska township by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Alaska township across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 53.39% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Alaska township Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterPopulation size estimates by sex in Alaskan Communities/Places and aggregation at Borough/CDA and State level for recent 5-year American Community Survey (ACS) intervals. Data lists counts and margin of error of total, males and females of each place. The 5-year interval data sets are published approximately 1/2 a period later than the End Year listed - for instance the interval ending in 2019 is published in mid-2021.Source: US Census Bureau, American Community SurveyThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: US Census - The Significance of Age and Sex DataUSE CONSTRAINTS: The Alaska Department of Commerce, Community, and Economic Development (DCCED) provides the data in this application as a service to the public. DCCED makes no warranty, representation, or guarantee as to the content, accuracy, timeliness, or completeness of any of the data provided on this site. DCCED shall not be liable to the user for damages of any kind arising out of the use of data or information provided. DCCED is not the authoritative source for American Community Survey data, and any data or information provided by DCCED is provided "as is". Data or information provided by DCCED shall be used and relied upon only at the user's sole risk. For information about the American Community Survey, click here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of North Pole by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for North Pole. The dataset can be utilized to understand the population distribution of North Pole by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in North Pole. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for North Pole.
Key observations
Largest age group (population): Male # 5-9 years (261) | Female # 30-34 years (183). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Pole Population by Gender. You can refer the same here
Facebook
TwitterThis data collection contains population estimates for various time periods spanning from 1900 to 1979. The data for 1900-1929 represent the resident population of the United States by single year of age (0 to 75+), race (white, nonwhite), and sex. Data for these years exclude the Armed Forces and the population residing in Alaska and Hawaii. Age 75 includes all ages from 75 up. The files for 1930-1939 represent the resident population of the United States by single year of age (0 to 75+), race (white, nonwhite), and sex. Data for these years exclude the Armed Forces and the population residing in Alaska and Hawaii. Age 75 includes all ages from 75 up. The files for 1940-1949 represent the resident population plus Armed Forces overseas of the United States by single year of age (0 to 85+), race (white, nonwhite), and sex. Data for these years exclude the the population residing in Alaska and Hawaii. Age 85 includes all ages from 85 up. The files for 1950-1959 represent the resident population plus Armed Forces overseas of the United States by single year of age (0 to 85+), race (white, nonwhite), and sex. Data for these years include the the population residing in Alaska and Hawaii. Age 85 includes all ages from 85 up. The files for 1960-1979 represent the resident population plus Armed Forces overseas of the United States by single year of age (0 to 85+), race (white, black, and other), and sex. Data for these years include the the population residing in Alaska and Hawaii. Age 85 includes all ages from 85 up.
Facebook
TwitterThis study examines the prevalence of violence against American Indian and Alaska Native women and men, using a large nationally representative sample from the National Intimate Partner and Sexual Violence Survey (NISVS). More specifically, it provides estimates of sexual violence, physical violence by intimate partners, stalking, and psychological aggression by intimate partners. It also provides estimates of interracial and intraracial victimizations and briefly examines the impact of violence. This study is based on two of the NISVS samples that were included in the 2010 data collection effort --the general population sample and the American Indian and Alaska Native oversample. This American Indian and Alaska Native oversample was collected from geographical areas (telephone exchanges) where at least 50% of the population identifies themselves as American Indian or Alaska Native. To increase the generalizability of the American Indian and Alaska Native sample (and to add interviews conducted by cell phone), a new "combined" sample was created by including (a) all respondents in the American Indian and Alaska Native oversample and (b) 677 respondents in the general population sample who identified themselves as American Indian or Alaska Native. By combining these samples, a new sample was obtained that is large enough to produce reliable and valid estimates for all women and men in the United States who identify themselves as American Indian or Alaska Native. For a more exact discussion of the sample, see the NIJ Technical Report. The combined sample includes 2,473 women and 1,505 men who identified themselves as American Indian or Alaska Native. Results from the combined American Indian and Alaska Native sample were compared to results from the sample of respondents in the general population sample who identified themselves as non-Hispanic White alone. The comparison sample includes 7,646 women and 6,050 men who identified themselves as non-Hispanic White alone. There are 5 data files included with this study. Dataset 1 (General Population Raw Data) contains 18,957 cases and 26,114 variables. Dataset 2 (American Indian and Alaska Native (AIAN) Oversample Raw Data) contains 3,612 cases and 22,932 variables. Dataset 3 (Respondent-level Data) contains 21,378 cases and 493 variables. Dataset 4 (Perpetrator-level Data) contains 51,535 cases and 446 variables. Dataset 5 (Weights File) contains 3,978 cases and 9 variables.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Alaska population pyramid, which represents the Alaska population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Alaska Population by Age. You can refer the same here
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate, Median Age by Sex, Total Population (5-year estimate) in Juneau City and Borough, AK (B01002001E002110) from 2009 to 2023 about Juneau Borough/City, AK; age; AK; 5-year; median; and USA.
Facebook
TwitterDuring June, we perform ground-based composition counts to estimate calf production, recruitment, and adult sex ratio. We have radiocollared over 100 muskoxen in order to document seasonal shifts in distribution and habitat use, and to estimate survival and cause-specific mortality. Following the 1969 release, muskoxen increased rapidly in the Arctic Refuge, reaching a peak of approximately 400 individuals in 1986. This was followed by expansion of the population’s range into contiguous areas of north-central Alaska and northwestern Canada. We subsequently implemented cooperative surveys with the Alaska Department of Fish and Game (ADFG), Parks Canada, and Yukon Department of Environment to monitor the entire population. The number of muskoxen within the Refuge declined slightly, and then remained stable at about 325 from 1987 to 1998. We observed a precipitous decline in abundance of muskoxen within the Arctic Refuge beginning in 1999. In 2003, we estimated that fewer than 50 muskoxen occurred within Refuge boundaries. We attribute this decline to shifts in distribution, low calf recruitment, and decreased adult survival. In a recent cooperative study with ADFG (Reynolds et al. 2002), we determined that predation by grizzly bears was a significant and increasing source of mortality for muskoxen. The negative effect of predation on survival may be exacerbated by environmental conditions that limit access to forage, such as icing events and deep, persistent snows. We are continuing to monitor the status of this muskox population and investigate factors responsible for observed trends.
Facebook
TwitterThe AIAN Summary File contains data on population characteristics, such as sex, age, average household size, household type, and relationship to householder. The American Indian and Alaska Native Summary File (AIANSF) contains data on population characteristics, such as sex, age, average household size, household type, and relationship to householder. The file also includes housing characteristics, such as tenure (whether a housing unit is owner-occupied or renter- occupied) and age of householder for occupied housing units. Selected aggregates and medians also are provided. A complete listing of subjects in the AIANSF is found in Chapter 3, Subject Locator. The layout of the tables in the AIANSF is similar to that in Summary File 2 (SF 2). These data are presented in 47 population tables (identified with a "PCT") and 14 housing tables (identified with an "HCT") shown down to the census tract level; and 10 population tables (identified with a "PCO") shown down to the county level, for a total of 71 tables. Each table is iterated for the total population, the total American Indian and Alaska Native population alone, the total American Indian and Alaska Native population alone or in combination, and 1,567 detailed tribes and tribal groupings. Tribes or tribal groupings are included on the iterations list if they met a threshold of at least 100 people in the 2010 Census. In addition, the presentation of AIANSF tables for any of the tribes and tribal groupings is subject to a population threshold of 100 or more people in a given geography. That is, if there are fewer than 100 people in a specific population group in a specific geographic area, their population and housing characteristics data are not available for that geographic area in the AIANSF. See Appendix H, Characteristic Iterations, for more information.
Facebook
TwitterAge, sex and length data provide population dynamics information that can indicate how populations trends occur and may be changing. These data can help researchers estimate population growth rates, age-class distribution and population demographics. Knowing population demographics, growth rates and trends is particularly valuable to fisheries managers who must perform population assessments to inform management decisions. These data are therefore particularly important in valuable fisheries like the salmon fisheries of Alaska. This dataset includes age, sex and length data compiled from annual sampling of commercial and subsistence salmon harvests and research projects in westward and southeast Kodiak. It includes data on five salmon species: chinook, chum, coho, pink and sockeye. Age estimates were made by examining scales or bony structures (e.g. otoliths - ear bones). Scales were removed from the side of the fish; usually the left side above the lateral line. Scales or bony structures were then mounted on gummed cards and pressed on acetate to make an impression. The number of freshwater and saltwater annuli (i.e. rings) was counted to estimate age in years. Age is recorded in European Notation, which is a method of recording both fresh and saltwater annuli. For example, for a fish that spent one year in freshwater and 3 years in saltwater, its age is recorded as 1.3. The total fish age is the sum of the first and second numbers, plus one to account for the time between deposition and emergence. Therefore the fish in this example is 5 years old. Fish sex was determined by either examining external morphology (eg. head and belly shape) or internal sex organ. Length was measured in millimeters, generally from mid-eye to the fork of the tail. This data package includes the original data file (ASL DATA EXPORT.csv), a reformatting script that reformats the original data file into a consistent format (ASL_Formatting_SoutheastKodiak.R), and the reformatted dataset as a .csv file (ASL_formatted_SoutheastKodiak.csv).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate, Median Age by Sex, Total Population (5-year estimate) in Ketchikan Gateway Borough, AK (B01002001E002130) from 2009 to 2023 about Ketchikan Gateway Borough, AK; age; AK; 5-year; median; and USA.
Facebook
TwitterAge, sex and length data provide population dynamics information that can indicate how populations trends occur and may be changing. These data can help researchers estimate population growth rates, age-class distribution and population demographics. Knowing population demographics, growth rates and trends is particularly valuable to fisheries managers who must perform population assessments to inform management decisions. These data are therefore particularly important in valuable fisheries like the salmon fisheries of Alaska. This dataset includes age, sex and length data compiled from annual sampling of commercial and subsistence salmon harvests and research projects in the Upper Cook Inlet. It includes data on five salmon species: chinook, chum, coho, pink and sockeye. Age estimates were made by examining scales or bony structures (e.g. otoliths - ear bones). Scales were removed from the side of the fish; usually the left side above the lateral line. Scales or bony structures were then mounted on gummed cards and pressed on acetate to make an impression. The number of freshwater and saltwater annuli (i.e. rings) was counted to estimate age in years. Age is recorded in European Notation, which is a method of recording both fresh and saltwater annuli. For example, for a fish that spent one year in freshwater and 3 years in saltwater, its age is recorded as 1.3. The total fish age is the sum of the first and second numbers, plus one to account for the time between deposition and emergence. Therefore the fish in this example is 5 years old. Fish sex was determined by either examining external morphology (eg. head and belly shape) or internal sex organ. Length was measured in millimeters, generally from mid-eye to the fork of the tail. This dataset includes samples of Chinook salmon from 4 major rivers in Southeast Alaska: the Chilkat River, Stikine River, Taku River, and Unuk River. One original file is included for each river, in addition to a reformatting script, and a reformatted merged file (ASL_formatted_SoutheastSupplement.csv).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2011-2015 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2011-2015 American Community Survey 5-Year Estimates
Facebook
TwitterAge, sex and length (ASL) data provide population dynamics information that can indicate how population trends occur and may be changing. These data can help researchers estimate population growth rates, age-class distribution, and population demographics. Knowing population demographics, growth rates and trends is particularly valuable to fisheries managers who must perform population assessments to inform management decisions. These data are therefore important in valuable fisheries like the salmon fisheries of Alaska. This dataset includes age, sex and length data on pink salmon from annual sampling of commercial and subsistence salmon harvests and research projects in Prince William Sound from 1997-2016. Age estimates were made by examining scales or bony structures (e.g. otoliths - ear bones). Scales were removed from the side of the fish; usually the left side above the lateral line. Scales or bony structures were then mounted on gummed cards and pressed on acetate to make an impression. The number of freshwater and saltwater annuli (i.e. rings) was counted to estimate freshwater and saltwater ages in years. Fish sex was determined by either examining external morphology (eg. head and belly shape) or internal sex organ. Length was measured in millimeters, generally from mid-eye to the fork of the tail. This data package includes the original data file (PWS Pink_LenWt_Individual Salmon Data_ALLYEARS copy.xls), a script that reformats the original data file into a consistent format (ASL_formatting_PWS_pink.R), and the reformatted dataset as a .csv file (ASL_formatted_PrinceWilliamSoundpinks.csv).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
NOTE: For information on confidentiality protection, nonsampling error, and definitions, see http://www.census.gov/prod/cen2010/doc/aiansf.pdf. The American Indian and Alaska Native Summary File has a population threshold of 100. Data are available only for the population groups having a population of 100 or more of that specific group within a particular geographic area..Source: U.S. Census Bureau, 2010 Census.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2011-2015 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2011-2015 American Community Survey 5-Year Estimates
Facebook
TwitterAlaska had the highest male to female ratio in the United States in 2020, with ***** men for every 100 women. The male to female ratio was lowest in the District of Columbia, with **** men for every 100 women. The final frontier Alaska, which was purchased from the Russian Empire in 1867, is the largest state in the U.S. and one of the newest states, having been admitted to the U.S. in 1959. Although oil production dominates the economy, Alaska has a very high poverty rate and consistently has the highest unemployment rate in the country. It’s a man’s world Alaska is one of 10 states in the U.S. that has more men than women. The male to female ratio in the United States as a whole is about even, but as the population ages, there tend to be more females than males. Even though the sex ratio in the U.S. is almost one to one, a little more than ** percent of all females participated in the labor force in 2021, compared with **** percent of men.