In 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the National flu and COVID-19 weekly surveillance report.
This page includes reports published from 17 July 2025 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the https://osr.statisticsauthority.gov.uk/">Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Estimates of excess deaths can provide information about the burden of mortality potentially related to the COVID-19 pandemic, including deaths that are directly or indirectly attributed to COVID-19. Excess deaths are typically defined as the difference between the observed numbers of deaths in specific time periods and expected numbers of deaths in the same time periods. This visualization provides weekly estimates of excess deaths by the jurisdiction in which the death occurred. Weekly counts of deaths are compared with historical trends to determine whether the number of deaths is significantly higher than expected.Counts of deaths from all causes of death, including COVID-19, are presented. As some deaths due to COVID-19 may be assigned to other causes of deaths (for example, if COVID-19 was not diagnosed or not mentioned on the death certificate), tracking all-cause mortality can provide information about whether an excess number of deaths is observed, even when COVID-19 mortality may be undercounted. Additionally, deaths from all causes excluding COVID-19 were also estimated. Comparing these two sets of estimates — excess deaths with and without COVID-19 — can provide insight about how many excess deaths are identified as due to COVID-19, and how many excess deaths are reported as due to other causes of death. These deaths could represent misclassified COVID-19 deaths, or potentially could be indirectly related to the COVID-19 pandemic (e.g., deaths from other causes occurring in the context of health care shortages or overburdened health care systems).Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). A range of values for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound of the 95% prediction interval), by week and jurisdiction.Provisional death counts are weighted to account for incomplete data. However, data for the most recent week(s) are still likely to be incomplete. Weights are based on completeness of provisional data in prior years, but the timeliness of data may have changed in 2020 relative to prior years, so the resulting weighted estimates may be too high in some jurisdictions and too low in others. As more information about the accuracy of the weighted estimates is obtained, further refinements to the weights may be made, which will impact the estimates. Any changes to the methods or weighting algorithm will be noted in the Technical Notes when they occur. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.This visualization includes several different estimates:Number of excess deaths: A range of estimates for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound threshold), by week and jurisdiction. Negative values, where the observed count fell below the threshold, were set to zero.Percent excess: The percent excess was defined as the number of excess deaths divided by the threshold.Total number of excess deaths: The total number of excess deaths in each jurisdiction was calculated by summing the excess deaths in each week, from February 1, 2020 to present. Similarly, the total number of excess deaths for the US overall was computed as a sum of jurisdiction-specific numbers of excess deaths (with negative values set to zero), and not directly estimated using the Farrington surveillance algorithms.Select a dashboard from the menu, then click on “Update Dashboard” to navigate through the different graphics.The first dashboard shows the weekly predicted counts of deaths from all causes, and the threshold for the expected number of deaths. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The second dashboard shows the weekly predicted counts of deaths from all causes and the weekly count of deaths from all causes excluding COVID-19. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The th
This statistic displays the age-standardized death rate in Canada from 2000 to 2023, including all causes. In 2007, around *** out of 100 thousand Canadians died from any cause. In 2023, the death rate stood at nearly *** per 100,000. Death rates in CanadaCardiovascular disease and cancer are two of the most common causes of death in Canada and among other developed countries. In Canada major cardiovascular diseases accounted for around *** deaths per 100,000 population in 2023 and cancer accounted for around *** deaths per 100,000 population. The overall death rate in Canada has steadily increased since 2010, but saw greater increases in the years 2020 to 2022, in part due to the COVID-19 pandemic. In 2021, COVID-19 was the fourth leading cause of death in Canada, accounting for around five percent of all deaths that year. Life expectancy in CanadaBetween 1970 and 2019, Canada’s life expectancy at birth increased by *** years. The life expectancy in Canada as of 2021 was at almost 82 years of age, one year above the average life expectancy for OECD countries. As is common around the world, the life expectancy for women in Canada is higher than that of men, with Canadian women expected to live an average of over four years longer than their male counterparts.
Note: from 11 August 2022, we have switched to producing this report as a webpage and have converted the previous 4 reports from this season to webpages as well. This improves the readability of the report for a wider range of devices, including screen readers and mobile devices.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 14 July 2022 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages. All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.
As of 2023, the countries with the highest death rates worldwide were Monaco, Bulgaria, and Latvia. In these countries, there were ** to ** deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just *** death per 1,000 people. Leading causes of death The leading causes of death worldwide are, by far, cardiovascular diseases, accounting for ** percent of all deaths in 2021. That year, there were **** million deaths worldwide from ischaemic heart disease and **** million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2023, there were around **** million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined ** percent of all deaths in 2023. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around ****** deaths among men alone in the year 2025. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2023, the tenth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019, and it was the third leading cause of death in the U.S. during those years.
Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 13 July 2023 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a database (parquet format) containing publicly available multiple cause mortality data from the US (CDC/NCHS) for 2014-2022. Not all variables are included on this export. Please see below for restrictions on the use of these data imposed by NCHS. You can use the arrow package in R to open the file. See here for example analysis; https://github.com/DanWeinberger/pneumococcal_mortality/blob/main/analysis_nongeo.Rmd . For instance, save this file in a folder called "parquet3":
library(arrow)
library(dplyr)
pneumo.deaths.in <- open_dataset("R:/parquet3", format = "parquet") %>% #open the dataset
filter(grepl("J13|A39|J181|A403|B953|G001", all_icd)) %>% #filter to records that have the selected ICD codes
collect() #call the dataset into memory. Note you should do any operations you canbefore calling 'collect()" due to memory issues
The variables included are named: (see full dictionary:https://www.cdc.gov/nchs/nvss/mortality_public_use_data.htm)
year: Calendar year of death
month: Calendar month of death
age_detail_number: number indicating year or part of year; can't be interpreted itself here. see agey variable instead
sex: M/F
place_of_death:
Place of Death and Decedent’s Status
Place of Death and Decedent’s Status
1 ... Hospital, Clinic or Medical Center
- Inpatient
2 ... Hospital, Clinic or Medical Center
- Outpatient or admitted to Emergency Room
3 ... Hospital, Clinic or Medical Center
- Dead on Arrival
4 ... Decedent’s home
5 ... Hospice facility
6 ... Nursing home/long term care
7 ... Other
9 ... Place of death unknown
all_icd: Cause of death coded as ICD10 codes. ICD1-ICD21 pasted into a single string, with separation of codes by an underscore
hisp_recode: 0=Non-Hispanic; 1=Hispanic; 999= Not specified
race_recode: race coding prior to 2018 (reconciled in race_recode_new)
race_recode_alt: race coding after 2018 (reconciled in race_recode_new)
race_recode_new:
1='White'
2= 'Black'
3='Hispanic'
4='American Indian'
5='Asian/Pacific Islanders'
agey:
age in years (or partial years for kids <12months)
https://www.cdc.gov/nchs/data_access/restrictions.htm
Please Read Carefully Before Using NCHS Public Use Survey Data
The National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), conducts statistical and epidemiological activities under the authority granted by the Public Health Service Act (42 U.S.C. § 242k). NCHS survey data are protected by Federal confidentiality laws including Section 308(d) Public Health Service Act [42 U.S.C. 242m(d)] and the Confidential Information Protection and Statistical Efficiency Act or CIPSEA [Pub. L. No. 115-435, 132 Stat. 5529 § 302]. These confidentiality laws state the data collected by NCHS may be used only for statistical reporting and analysis. Any effort to determine the identity of individuals and establishments violates the assurances of confidentiality provided by federal law.
Terms and Conditions
NCHS does all it can to assure that the identity of individuals and establishments cannot be disclosed. All direct identifiers, as well as any characteristics that might lead to identification, are omitted from the dataset. Any intentional identification or disclosure of an individual or establishment violates the assurances of confidentiality given to the providers of the information. Therefore, users will:
By using these data you signify your agreement to comply with the above-stated statutorily based requirements.
Sanctions for Violating NCHS Data Use Agreement
Willfully disclosing any information that could identify a person or establishment in any manner to a person or agency not entitled to receive it, shall be guilty of a class E felony and imprisoned for not more than 5 years, or fined not more than $250,000, or both.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Years of life lost due to mortality from all causes (ICD-10 A00-Y99). Years of life lost (YLL) is a measure of premature mortality. Its primary purpose is to compare the relative importance of different causes of premature death within a particular population and it can therefore be used by health planners to define priorities for the prevention of such deaths. It can also be used to compare the premature mortality experience of different populations for a particular cause of death. The concept of years of life lost is to estimate the length of time a person would have lived had they not died prematurely. By inherently including the age at which the death occurs, rather than just the fact of its occurrence, the calculation is an attempt to better quantify the burden, or impact, on society from the specified cause of mortality. Legacy unique identifier: P00332
The number of deaths in Sweden in 2020 amounted to over 98,000. A high share of the deaths in 2020 were related to the coronavirus pandemic. However, in 2021, the number sank below 92,000, before increasing to over 94,000 in 2022 and 2023. The highest number of coronavirus deaths were among individuals age 70 and older. Sweden is the Nordic country that has reported the highest number of COVID-19-related deaths since the outbreak of the pandemic.
The most common causes of death
The most common cause of death in 2022 was diseases of the circulatory system (cardiovascular diseases). This cause was followed by cancerous tumors.
Ischemic heart disease
Among the diseases in the circulatory system, the one that caused the most deaths was chronic ischemic heart disease. Chronic ischemic heart disease is when the blood flow to the heart is reduced because the arteries of the heart are blocked. In 2020, ischemic heart disease caused more than 50,000 deaths per 100,000 inhabitants.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
5-year all-cause mortality.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Total Estimate: Hawaii data was reported at 1,382.000 Number in 16 Sep 2023. This stayed constant from the previous number of 1,382.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: Hawaii data is updated weekly, averaging 1,382.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 1,382.000 Number in 16 Sep 2023 and a record low of 1,382.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: Hawaii data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Total Excess Est: North Carolina data was reported at 12,029.000 Number in 16 Sep 2023. This stayed constant from the previous number of 12,029.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Total Excess Est: North Carolina data is updated weekly, averaging 12,029.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 12,029.000 Number in 16 Sep 2023 and a record low of 12,029.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Total Excess Est: North Carolina data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
In 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.