As of March 2025, there were a reported 5,426 data centers in the United States, the most of any country worldwide. A further 529 were located in Germany, while 523 were located in the United Kingdom. What is a data center? A data center is a network of computing and storage resources that enables the delivery of shared software applications and data. These facilities can house large amounts of critical and important data, and therefore are vital to the daily functions of companies and consumers alike. As a result, whether it is a cloud, colocation, or managed service, data center real estate will have increasing importance worldwide. Hyperscale data centers In the past, data centers were highly controlled physical infrastructures, but the cloud has since changed that model. A cloud data service is a remote version of a data center – located somewhere away from a company's physical premises. Cloud IT infrastructure spending has grown and is forecast to rise further in the coming years. The evolution of technology, along with the rapid growth in demand for data across the globe, is largely driven by the leading hyperscale data center providers.
Link Tonnages, Locks, Docks, Principle Ports, River Miles, Waterway Network, Waterway Network Nodes.
By Homeland Infrastructure Foundation [source]
The UPS Facilities dataset is a comprehensive collection of information about UPS (United Parcel Service) facilities located across the United States. This dataset provides details on the location, placement, and contact information of each facility.
The dataset includes various columns such as X and Y coordinates, which indicate the longitude and latitude coordinates respectively. These coordinates pinpoint the exact geographic location of each UPS facility. Additionally, there are columns for the name of each facility, address including street address and additional information (ADDRESS2 and ADDRESS3), city, state, ZIP code, phone number for contact purposes.
Furthermore, this dataset provides insightful information about each facility's match status in terms of its address accuracy or completeness. It also includes details about the specific business associated with each UPS facility.
In addition to these data points, there are columns that provide census codes for each facility location. These codes offer additional contextual information related to demographic and socio-economic characteristics associated with each area where a UPS facility is situated.
Overall, this extensive dataset serves as a comprehensive resource for researchers or businesses looking to analyze or utilize information regarding UPS facilities across different states in the United States
Introduction:
Understanding the Dataset Structure: The dataset consists of several columns that provide relevant information about each UPS facility location. Here is a brief overview of the key columns:
NAME: The name of the UPS facility.
ADDRESS: The street address of the UPS facility.
ADDRESS2/ADDRESS3: Additional address information for the facility.
CITY/STATE/ZIP: The city, state, and ZIP code where the facility is located.
PHONE: The contact phone number for the facility.
Additionally, there are geographic coordinates (LATITUDE and LONGITUDE) representing each facility's precise location on a map. Other columns such as PLACEMENT, MATCHSTATU, CENSUSCODE, and BUSINESSNA provide further context regarding placement status, address matching status, census codes for locations, and associated business names.
- Potential Use Cases:
a) Visualizing Facility Distribution: Using latitude and longitude coordinates from this dataset with mapping tools like Python's Folium or Tableau can help create interactive maps that showcase spatial distributions across different regions.
b) Analyzing Facility Density: By aggregating data at regional levels (e.g., state-wise), you can analyze which areas have higher concentrations of UPS facilities compared to others. This analysis may offer insights into patterns related to population density or commercial activity.
c) Optimizing Transportation Routes: Understanding where these facilities are located can be beneficial for route optimization. By analyzing facility placements and their proximity to transportation networks, you can identify potential areas for streamlining logistics operations.
d) Market Research: The dataset's additional columns (such as BUSINESSNA) allow researchers to analyze UPS facilities within the context of associated businesses. This information can be useful for market research, identifying industry clusters, or studying supply chain dynamics.
Data Cleaning and Preprocessing: Before utilizing this dataset, it is recommended to perform standard data cleaning procedures, such as handling missing or incorrect values. Pay attention to any inconsistencies in column names or encoding formats that may require normalization.
Combining with Other Datasets: To
- Geospatial analysis: This dataset can be used for geospatial analysis to analyze the distribution and concentration of UPS facilities across different states or cities. It can help identify areas with high or low availability of UPS services and assist logistics planning and decision making.
- Customer segmentation: By combining this dataset with customer data, businesses can segment their customers based on proximity to UPS facilities. This can help companies optimize their delivery routes, improve customer service, and target marketing efforts more effectively.
- Benchmarking and competition analysis: The dataset can also be used for benchmarking purposes by comparing the number of UPS facilities in different regions or against competito...
The U.S. Geological Survey and the University of Massachusetts at Amherst (UMass Amherst), in cooperation with the Massachusetts Department of Environmental Protection (MassDEP), began a series of studies in 2019 to develop a web-based statewide hydraulic modeling tool to provide preliminary culvert designs to support stream crossing replacement projects in Massachusetts. This Web Map Service (WMS) has been developed to query data from the hydraulic models at select stream crossing locations using the StreamStats web application for Massachusetts. The WMS contains stream crossing point locations with hydrology and hydraulic data tables and associated watershed polygons. These stream crossing locations were derived from the North Atlantic Aquatic Connectivity Collaborative data center (NAACC Data Center). Preliminary culvert designs for three-sided box, conspan arch, and a pipe culvert have been modeled using the U.S. Army Corps of Engineer’s Hydrologic Engineering Center’s River Analysis System (HEC-RAS) software with cross-sectional and channel geometry data derived from high-resolution light detection and ranging (lidar) Digital Elevation Models (DEM). The WMS layer provides the ability to generate reports in the StreamStats web application for Massachusetts at the stream crossing locations for site _location information, preliminary culvert designs, flood flows, bankfull channel geometry, aquatic habitat and stream connectivity restoration potential, basin characteristics, and other select information.
This comprehensive retail point-of-interest (POI) dataset provides a detailed map of retail establishments across the United States and Canada. Retail strategists, market researchers, and business developers can leverage precise store location data to analyze market distribution, identify emerging trends, and develop targeted expansion strategies.
Point of Interest (POI) data, also known as places data, provides the exact location of buildings, stores, or specific places. It has become essential for businesses to make smarter, geography-driven decisions in today's competitive retail landscape of location intelligence.
LocationsXYZ, the POI data product from Xtract.io, offers a comprehensive retail store data database of 6 million locations across the US, UK, and Canada, spanning 11 diverse industries, including: -Retail store locations -Restaurants -Healthcare -Automotive -Public utilities (e.g., ATMs, park-and-ride locations) -Shopping centers and malls, and more
Why Choose LocationsXYZ for Your Retail POI Data Needs? At LocationsXYZ, we: -Deliver POI data with 95% accuracy for reliable store location data -Refresh POIs every 30, 60, or 90 days to ensure the most recent retail location information -Create on-demand POI datasets tailored to your specific retail data requirements -Handcraft boundaries (geofences) for shopping center locations to enhance accuracy -Provide retail POI data and polygon data in multiple file formats
Unlock the Power of Retail Location Intelligence With our point-of-interest data for retail stores, you can: -Perform thorough market analyses using comprehensive store location data -Identify the best locations for new retail stores -Gain insights into consumer behavior and shopping patterns -Achieve an edge with competitive intelligence in retail markets
LocationsXYZ has empowered businesses with geospatial insights and retail location data, helping them scale and make informed decisions. Join our growing list of satisfied customers and unlock your business's potential with our cutting-edge retail POI data and shopping center location intelligence.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center This layer is sourced from maps.bts.dot.gov.
Monthly summary statistics are based on data from the Lock Performance Monitoring System (LPMS). The LPMS was developed to collect a 100% sample of data on the locks that are owned and/or operated by the US Army Corps of Engineers. Each record contains data summarized monthly by lock chamber, and direction (upbound and number and types of vessels and lockages (recreation, commercial, tows, other), cuts, hardware operations, delay and processing times, number of tows and all vessels delayed, total tons, commodity tonnages, and number of barges. The data are by waterway and by calendar year. The waterway files contain 5 years of data for one waterway. The calendar year files contain 1 year of data for all waterways.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center
This data set provides soil maps for the United States (US) (including Alaska), Canada, Mexico, and a part of Guatemala. The map information content includes maximum soil depth and eight soil attributes including sand, silt, and clay content, gravel content, organic carbon content, pH, cation exchange capacity, and bulk density for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm). The spatial resolution is 0.25 degree. The Unified North American Soil Map (UNASM) combined information from the state-of-the-art US General Soil Map (STATSGO2) and Soil Landscape of Canada (SLCs) databases. The area not covered by these data sets was filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The Northern Circumpolar Soil Carbon (NCSCD) database was used to provide more accurate and up-to-date soil organic carbon information for the high-latitude permafrost region and was combined with soil organic carbon content derived from the UNASM (Liu et al., 2013). The UNASM data were utilized in the North American Carbon Program (NACP) Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) as model input driver data (Huntzinger et al., 2013). The driver data were used by 22 terrestrial biosphere models to run baseline and sensitivity simulations. The compilation of these data was facilitated by the NACP Modeling and Synthesis Thematic Data Center (MAST-DC). MAST-DC was a component of the NACP (www.nacarbon.org) designed to support NACP by providing data products and data management services needed for modeling and synthesis activities.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire.
USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected manmade facilities across all US states and territories. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations. Structures currently included are: School, School:Elementary, School:Middle, School:High, College/University, Technical/Trade School, Ambulance Service, Fire Station/EMS Station, Law Enforcement, Prison/Correctional Facility, Post Office, Hospital/Medical Center, Cabin, Campground, Cemetery, Historic Site/Point of Interest, Picnic Area, Trailhead, Vistor/Information Center, US Capitol, State Capitol, US Supreme Court, State Supreme Court, Court House, Headquarters, Ranger Station, White House, and City/Town Hall. Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. Included is a feature class of preliminary building polygons provided by FEMA, USA Structures. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain structures data in either Esri File Geodatabase or Shapefile formats. For additional information on the structures data model, go to https://www.usgs.gov/ngp-standards-and-specifications/national-map-structures-content.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count. ## Data Collection Methods ## The data in the Alternative Fueling Station Locator are gathered and verified through a variety of methods. The National Renewable Energy Laboratory (NREL) obtains information about new stations from trade media, Clean Cities coordinators, an Add a Station form on the Alternative Fuels Data Center (AFDC) website, and through collaborating with infrastructure equipment and fuel providers. NREL regularly compares its station data with those of other relevant trade organizations and websites. Differences in methodologies and inclusion criteria may result in slight differences between NREL's database and those maintained by other organizations. NREL also collaborates with alternative fuel industry groups to maintain the data. NREL and its data collection subcontractor are currently collaborating with natural gas, electric drive, biodiesel, ethanol, and propane industry groups to establish best practices for identifying new stations in the most-timely manner possible and to develop a more rigorous network for the future. ## Station Update Schedule ## Existing stations in the database are contacted at least once a year on an established schedule to verify they are still operational and dispensing the fuel specified. Based on an established data collection schedule, the database is updated once a month with the exception of electric vehicle supply equipment (EVSE) data, which are updated twice a month. Stations that are no longer operational or no longer provide alternative fuel are removed from the database on a monthly basis or as they are identified. ## Mapping and Counting Methods ## Each point on the map is counted as one station in the station count. A station appears as one point on the map, regardless of the number of fuel dispensers or charging outlets at that location. Station addresses are geocoded and mapped using an automatic geocoding application. The geocoding application returns the most accurate location based on the provided address. Station locations may also be provided by external sources (e.g., station operators) and/or verified in a geographic information system (GIS) tool like Google Earth, Google Maps, or Google StreetView. This information is considered highly accurate, and these coordinates override any information generated using the geocoding application. ## Notes about Specific Station Types ## ### Private Stations ### Stations with an Access of "Private - Fleet customers only" may allow other entities to fuel through a business-to-business arrangement. For more information, fleet customers should refer to the information listed in the details section for that station to contact the station directly. ### Biodiesel Stations ### The Alternative Fueling Station Locator only includes stations offering biodiesel blends of 20% (B20) and above. ### Electric Vehicle Supply Equipment (EVSE) ### An electric charging station, or EVSE, appears as one point on the map, regardless of the number of charging outlets at that location. The number and type of charging outlets available are displayed as additional details when the station location is selected. Each point on the map is counted as one station in the station count. To see a total count of EVSE for all outlets available, go to the Alternative Fueling Station Counts by State table. Residential EVSE locations are not included in the Alternative Fueling Station Locator. ## Liquefied Petroleum Gas (Propane) Stations ### Because many propane stations serve customers other than drivers and fleets, NREL collaborated with the industry to effectively represent the differences. Each propane station is designated as a 'primary' or 'secondary' service type. Both types are able to fuel vehicles. However, locations with a 'primary' designation offer vehicle services and fuel priced specifically for use in vehicles. The details page for each station lists its service designation.
Contains physical information on commercial facilities at the principal U.S. Coastal, Great Lakes and Inland Ports. The data consists of listings of port area's waterfront facilities, including information on berthing, cranes, transit sheds, grain elevators, marine repair plants, fleeting areas, and docking and storage facilities. Collection of data is performed on a rotational basis to ensure on-site accuracy at each facility.
© The National Waterway Network was created on behalf of the Office of the Asistant Secretary for Research and Technology's Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications.
© The National Waterway Network was created on behalf of the Office of the Asistant Secretary for Research and Technology's Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration.
Map shows all stray cats and dogs that are currently listed in AAC's database for no longer than a week. Most will be located at AAC, but some will be held by citizens, which will be indicated on the "At AAC" column. Please check http://www.austintexas.gov/department/lost-found-pet for more information.
The most widely used approach to sensitive environment mapping in the United States is the NOAA Environmental Sensitivity Index (ESI). This approach systematically compiles information in standard formats for coastal shoreline sensitivity, biological resources, and human-use resources. ESI maps are useful for identifying sensitive resources before a spill occurs so that protection priorities can be established and cleanup strategies designed in advance. Using ESIs in spill response and planning reduces the environmental consequences of the spill and cleanup efforts. The Clean Water Act with amendments by the Oil Pollution Act of 1990 requires response plans for immediate and effective protection of sensitive resources.
The Digital Benthic Habitat-GIS Map of Florida Bay (1991-1995 Substrate), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_benthic_habitat.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_benthic_habitat.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_benthic_habitat.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_benthic_habitat_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Oceanic and Atmospheric Administration Coastal Services Center. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_benthic_habitat_metadata.txt or ever_benthic_habitat_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid tics and italicized grid coordinate markers and outlines of map sheet boundaries. Each grid square is 3500 x 4500 feet. Each Index Sheet contains 16 lot/block sheets, labeled from left to right, top to bottom (4 across, 4 down): A, B, C, D, E, F, G, H, J, K, L, M, N, P, R, S. The first (4) numeric characters in a parcelID indicate the Index sheet in which the parcel can be found, the alpha character identifies the block in which most (or all) of the property lies.
If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below.
Category: Other
Organization: Allegheny County
Department: Geographic Information Systems Group; Department of Administrative Services
Temporal Coverage: 2004
Data Notes:
Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: none
Other: none
Related Document(s): Data Dictionary (none)
Frequency - Data Change: As needed
Frequency - Publishing: As needed
Data Steward Name: Eli Thomas
Data Steward Email: gishelp@alleghenycounty.us
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Spatial information about the seafloor is critical for decision-making by marine resource science, management and tribal organizations. Coordinating data needs can help organizations leverage collective resources to meet shared goals. To help enable this coordination, the National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science (NCCOS) developed a spatial framework, process and online application to identify common data collection priorities for seafloor mapping, sampling and visual surveys off the US Caribbean territories of Puerto Rico and the US Virgin Islands. Fifteen participants from local federal, state, and academic institutions entered their priorities in an online application, using virtual coins to denote their priorities in 2.5x2.5 kilometer (nearshore) and 10x10 kilometer (offshore) grid size. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Results were analyzed and mapped using statistical techniques to identify significant relationships between priorities, reasons for those priorities and data needs. Fifteen high priority locations were broadly identified for future mapping, sampling and visual surveys. These locations include: (1) a coastal location in northwest Puerto Rico (Punta Jacinto to Punta Agujereada), (2) a location approximately 11 km off Punta Agujereada, (3) coastal Rincon, (4) San Juan, (5) Punta Arenas (west of Vieques Island), (6) southwest Vieques, (7) Grappler Seamount, (8) southern Virgin Passage, (9) north St. Thomas, (10) east St. Thomas, (11) south St. John, (12) west offshore St. Croix, (13) west nearshore St. Croix, (14) east nearshore St. Croix, and (15) east offshore St. Croix. Participants consistently selected (1) Biota/Important Natural Area, (2) Commercial Fishing and (3) Coastal/Marine Hazards as their top reasons (i.e., justifications) for prioritizing locations, and (1) Benthic Habitat Map and (2) Sub-bottom Profiles as their top data or product needs. This ESRI shapefile summarizes the results from this spatial prioritization effort. This information will enable US Caribbean organization to more efficiently leverage resources and coordinate their mapping of high priority locations in the region.
This effort was funded by NOAA’s NCCOS and supported by CRCP. The overall goal of the project was to systematically gather and quantify suggestions for seafloor mapping, sampling and visual surveys in the US Caribbean territories of Puerto Rico and the US Virgin Islands. The results are will help organizations in the US Caribbean identify locations where their interests overlap with other organizations, to coordinate their data needs and to leverage collective resources to meet shared goals.
There were four main steps in the US Caribbean spatial prioritization process. The first step was to identify the technical advisory team, which included the 4 CRCP members: 2 from each the Puerto Rico and USVI regions. This advisory team recommended 33 organizations to participate in the prioritization. Each organization was then requested to designate a single representative, or respondent, who would have access to the web tool. The respondent would be responsible for communicating with their team about their needs and inputting their collective priorities. Step two was to develop the spatial framework and an online application. To do this, the US Caribbean was divided into 4 sub regions: nearshore and offshore for both Puerto Rico and USVI. The total inshore regions had 2,387 square grid cells approximately 2.5x2.5 km in size. The total offshore regions consisted of 438 square grid cells 10x10 km in size. Existing relevant spatial datasets (e.g., bathymetry, protected area boundaries, etc.) were compiled to help participants understand information and data gaps and to identify areas they wanted to prioritize for future data collections. These spatial datasets were housed in the online application, which was developed using Esri’s Web AppBuilder. In step three, this online application was used by 15 participants to enter their priorities in each subregion of interest. Respondents allocated virtual coins in the grid cells to denote their priorities for each region. Respondents were given access to all four regions, despite which territory they represented, but were not required to provide input into each region. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Coin values were standardized across the nearshore and offshore zones and used to identify spatial patterns across the US Caribbean region as a whole. The number of coins were standardized because each subregion had a different number of grid cells and participants. Standardized coin values were analyzed and mapped using statistical techniques, including hierarchical cluster analysis, to identify significant relationships between priorities, reasons for those priorities and data needs. This ESRI shapefile contains the 2.5x2.5 km and 10x10 km grid cells used in this prioritization effort and associated the standardized coin values overall, as well as by organization, justification and product. For a complete description of the process and analysis please see: Kraus et al. 2020.
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).This is an ArcGIS image service showing color shaded relief visualizations of high-resolution digital elevation models (DEMs) of U.S. coastal regions. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. DEMs included in this visualization: High-resolution DEMs of select U.S. coastal communities and surrounding areas. Most are at a resolution of 1/3 to 1 arc-second (approx 10-30 m); U.S. Coastal Relief Model: A 3 arc-second (approx 90 m) comprehensive view of the conterminous U.S. coastal zone, Puerto Rico, and Hawaii; Southern Alaska Coastal Relief Model: A 24 arc-second (approx. 500 m) model of Southern Alaska, spanning the Bering Sea, Aleutian Islands, and Gulf of Alaska. This map service can be used as a basemap. It has a transparent background, so it can also be shown as a layer on top of a different basemap. Please see NGDC's corresponding DEM Footprints map service for polygon footprints and more information about the individual DEMs used to create this composite view.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Geophysical Data Center. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NGDC, and elsewhere on the web); Layers 6-11: NGDC DEM Projects (DEMs hosted at NGDC, color-coded by project); Layer 12: All NGDC Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NGDC).
As of March 2025, there were a reported 5,426 data centers in the United States, the most of any country worldwide. A further 529 were located in Germany, while 523 were located in the United Kingdom. What is a data center? A data center is a network of computing and storage resources that enables the delivery of shared software applications and data. These facilities can house large amounts of critical and important data, and therefore are vital to the daily functions of companies and consumers alike. As a result, whether it is a cloud, colocation, or managed service, data center real estate will have increasing importance worldwide. Hyperscale data centers In the past, data centers were highly controlled physical infrastructures, but the cloud has since changed that model. A cloud data service is a remote version of a data center – located somewhere away from a company's physical premises. Cloud IT infrastructure spending has grown and is forecast to rise further in the coming years. The evolution of technology, along with the rapid growth in demand for data across the globe, is largely driven by the leading hyperscale data center providers.