21 datasets found
  1. Global PALSAR-2/PALSAR Yearly Mosaic, version 1

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JAXA EORC, Global PALSAR-2/PALSAR Yearly Mosaic, version 1 [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
    Explore at:
    Dataset provided by
    Japan Aerospace Exploration Agencyhttp://www.jaxa.jp/
    Time period covered
    Jan 1, 2007 - Jan 1, 2020
    Area covered
    Earth
    Description

    A newer version of this dataset with data for 2015-2021 can be found in JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH The global 25m PALSAR/PALSAR-2 mosaic is a seamless global SAR image created by mosaicking strips of SAR imagery from PALSAR/PALSAR-2. For each year and location, the strip data were selected through visual inspection of the browse mosaics available over the period, with those showing minimum response to surface moisture preferentially used. In cases where the availability was limited (e.g., because of the requirement for observations during specific emergencies), data were necessarily selected from the year before or after, including from 2006. Shimada et al. 2014 There is no data for 2011-2014 due to the gap between ALOS and ALOS-2 temporal coverage. The SAR imagery was ortho-rectificatied and slope corrected using the 90m SRTM Digital Elevation Model. A destriping process (Shimada & Isoguchi, 2002, 2010) was applied to equalize the intensity differences between neighboring strips, occurring largely due to seasonal and daily differences in surface moisture conditions. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation: γ₀ = 10log₁₀(DN²) - 83.0 dB Attention: Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter. More information is available in the provider's Dataset Description.

  2. ALOS PALSAR products

    • earth.esa.int
    Updated Mar 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Space Agency (2017). ALOS PALSAR products [Dataset]. https://earth.esa.int/eogateway/catalog/alos-palsar-products
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset authored and provided by
    European Space Agencyhttp://www.esa.int/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a

    Description

    The dataset contains all ESA acquisitions over the ADEN zone (Europe, Africa and the Middle East) plus some products received from JAXA over areas of interest around the world. Further information on ADEN zones can be found in this technical note. ALOS PALSAR products are available in following modes: Fine Beam Single polarisation (FBS), single polarisation (HH or VV), swath 40-70 km, resolution 10 m, temporal coverage from 02/05/2006 to 30/03/2011 Fine Beam Double polarisation (FBD), double polarisation (HH/HV or VV/VH), swath 40-70 km, resolution 10 m, temporal coverage from 02/05/2006 to 30/03/2011 Polarimetry mode (PLR), with four polarisations simultaneously: swath 30 km, resolution 30 m, temporal coverage from 26/08/2006 to 14/04/2011 ScanSAR Burst mode 1 (WB1), single polarisation: swath 250-350 km, resolution 100 m, temporal coverage from 12/06/2006 to 21/04/2011. Following processing levels are available: RAW (Level 1.0): Raw data generated by every downlink segment and every band. Divided into an equivalent size to one scene SLC (Level 1.1): Slant range single look complex product. Not available for WB1 GDH (Level 1.5): Ground range Detected, Normal resolution product GEC (Level 1.5): Geocoded product. The table summarises the ALOS PALSAR offer. Instrument mode Product type Processing level description JAXA processing level equivalent Fine Beam Single polarisation (HH or VV) FBS_RAW_0P Raw data generated by every downlink segment and every band. Divided into an equivalent size to one scene 1.0 FBS_GDH_1P Ground range Detected, Normal resolution product 1.5 FBS_GEC_1P Geocoded product 1.5 FBS_SLC_1P Slant range single look complex product 1.1 Fine Beam Double polarisation (HH/HV or VV/VH) FBD_RAW_0P Raw data generated by every downlink segment and every band. Divided into an equivalent size to one scene 1.0 FBD_GDH_1P Ground range Detected, Normal resolution product 1.5 FBD_GEC_1P Geocoded product 1.5 FBD_SLC_1P Slant range single look complex product 1.1 Polarimetry mode (4 polarisation) PLR_RAW_0P Raw data generated by every downlink segment and every band. Divided into an equivalent size to one scene 1.0 PLR_GDH_1P Ground range Detected, Normal resolution product 1.5 PLR_GEC_1P Geocoded product 1.5 PLR_SLC_1P Slant range single look complex product 1.1 ScanSAR Burst mode 1 (single polarisation) WB1_RAW_0P Raw data generated by every downlink segment and every band. Divided into an equivalent size to one scene 1.0 WB1_GDH_1P Ground range Detected, Normal resolution product 1.5 WB1_GEC_1P Geocoded product 1.5

  3. n

    ALOS_PALSAR_LEVEL2.2

    • cmr.earthdata.nasa.gov
    • s.cnmilf.com
    • +5more
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ALOS_PALSAR_LEVEL2.2 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2011599335-ASF.html
    Explore at:
    Dataset updated
    Apr 13, 2023
    Time period covered
    Jan 23, 2006 - May 23, 2011
    Area covered
    Earth
    Description

    ALOS PALSAR Level 2.2

  4. f

    Digital Elevation Model Super-Resolution Incorporating Optical...

    • figshare.com
    application/x-rar
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zeyuan Zhang (2025). Digital Elevation Model Super-Resolution Incorporating Optical Image2Gradient Information: A Case Study of the Catalonia Region in Spain [Dataset]. http://doi.org/10.6084/m9.figshare.28525619.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    figshare
    Authors
    Zeyuan Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spain, Catalonia
    Description

    This dataset provides a paired low- and high-resolution DEM dataset designed for super-resolution reconstruction tasks in digital elevation modeling. Unlike traditional SR datasets that rely on simple interpolation-based downscaling, our dataset is constructed from real-world DEM sources to ensure realistic low-to-high resolution mappings.The high-resolution DEM data is sourced from the Institut Cartogràfic i Geològic de Catalunya (ICGC) with a spatial resolution of 2 meters, covering the Catalonia region in Spain. The low-resolution counterpart is derived from ALOS PALSAR DEM at 12.5 meters resolution, which offers extensive land coverage but lower spatial detail. Additionally, paired RGB optical remote sensing images from ICGC's aerial orthophotos (0.5m resolution) are included to facilitate multi-modal learning approaches.This dataset contains approximately 7,000 training pairs and around 600 test pairs, providing a robust benchmark for DEM super-resolution, deep learning-based terrain modeling, and geospatial data fusion research.

  5. a

    DEM Alos Palsar cuenca del río Maipo, Región Metropolitana, Región de...

    • geohub-cuenca-del-maipo-cigiden.hub.arcgis.com
    Updated Apr 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    siinzunza6 (2021). DEM Alos Palsar cuenca del río Maipo, Región Metropolitana, Región de Valparaíso y Región del Libertador General Bernardo O'Higgins (Arcgis Pro) [Dataset]. https://geohub-cuenca-del-maipo-cigiden.hub.arcgis.com/content/7c25202353d348f09265bd53b732f9a5
    Explore at:
    Dataset updated
    Apr 28, 2021
    Dataset authored and provided by
    siinzunza6
    Area covered
    Río Maipo, Región Metropolitana, Valparaíso, O'Higgins,
    Description

    Resumen EL SATÉLITE ALOS: Lanzado en enero del 2006 por la Agencia Japonesa de Exploración Aeroespacial en enero de 2006 y su nombre japonés es "DAICHI". El satélite ALOS durante su operación (mayo 16 de 2006 a abril 22 de 2011), colectó imágenes de Radar en escenas de 50 km x 70 km de todo el planeta cada 45 días aproximadamente a través de su sensor PALSAR (Phased Array Type L-band Synthetic Aperture Radar). DEM ALOS-PALSAR Uno de los productos ofrecidos por Alaska Satellite Facility en el contexto de las imágenes de ALOS Palsar, es el Modelo Digital de Elevación de 12.5 m por pixel. (Ver en https://vertex.daac.asf.alaska.edu/). Para Chile, la cobertura es total. Cada escena mide 85 x 85 km y es posible descargar orbitas ascendentes como descendentes. Se descargaron las escenas y se confeccionaron mosaicos regionales. Para cambiar la altura Geoidal a Nivel medio del mar, se utilizó un modelo Geoidal EGM2008 mundial, que registra las diferencias entre el geoide y en nivel medio del mar, con pixeles de 1 segundo de arco (30 mt). Las diferencias geoidales se le restaron a los valores de altitud del DEM. Por último se recortó el DEM con el límite Regional ODEPA y se exportaron los resultados (15 regiones) al formato JPG2000 en 16 bit y sin decimales. La escala aproximada, definida por el error vertical y por el tamaño del Pixel, es de 1:25.000 Tipo de archivo: Raster en formato GRID.Palabras claves: medio fisico, topografiaAño del archivo: 2016Coordenadas: - norte: 6.355.841,256000- sur: 6.205.191,256000- oeste: 255.600,000000- este: 428.450,000000Autor: Centro de Información de Recursos Naturales (CIREN)Fuente: IDE Chile https://www.ide.cl/descargas/capas/Imagenes/DEM/RM.rar https://www.ide.cl/descargas/capas/Imagenes/DEM/LGBO.rarhttps://www.ide.cl/descargas/capas/Imagenes/DEM/VALPO.rarRestricciones: Dato abierto

  6. Mosaico anual global de PALSAR-2/PALSAR, versión 1

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JAXA EORC, Mosaico anual global de PALSAR-2/PALSAR, versión 1 [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR?hl=es-419
    Explore at:
    Dataset provided by
    Agencia Japonesa de Exploración Aeroespacialhttp://www.jaxa.jp/
    Time period covered
    Jan 1, 2007 - Jan 1, 2020
    Area covered
    Tierra
    Description

    Puedes encontrar una versión más reciente de este conjunto de datos con datos de 2015 a 2021 en JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH. La maraña global de PALSAR/PALSAR-2 de 25 m es una imagen global de SAR sin interrupciones creada a partir de una maraña de imágenes de SAR de PALSAR/PALSAR-2. Para cada año y ubicación, los datos de las franjas se seleccionaron mediante una inspección visual de los …

  7. The remote sensing data used in our research

    • figshare.com
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aihepa Aihaiti (2025). The remote sensing data used in our research [Dataset]. http://doi.org/10.6084/m9.figshare.28287032.v1
    Explore at:
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Aihepa Aihaiti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In our study, the research data includes the following types: RADARSAT-2 C-band SAR data, Sentinel-2 MSI L2A data, ALOS PALSAR DEM data, and field survey data. Among these, the Sentinel-2 data is L2A level and can be accessed from the European Space Agency's official website (https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2). The ALOS PALSAR DEM data can be obtained from NASA's official website (https://search.asf.alaska.edu/#/?dataset=ALOS). The RADARSAT-2 data was purchased by our team, and we only have the rights to use it, without permission to share. The field survey data are the team's research results and can be made available upon request to the corresponding author.

  8. n

    Subglacial overdeepenings in selected valley glaciers in Central Himalayas,...

    • data-search.nerc.ac.uk
    Updated Jul 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Subglacial overdeepenings in selected valley glaciers in Central Himalayas, New Zealand Southern Alps, European Alps, Peruvian Andes and Alaska, 2006-2018 [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=EARTH%20SCIENCE%20%3E%20Land%20Surface%20%3E%20Geomorphology%20%3E%20Glacial%20Landforms/Processes
    Explore at:
    Dataset updated
    Jul 20, 2021
    Description

    The dataset contains depth information (in meters) for pixels of subglacial overdeepenings with an area of 10000 m2 or larger, across five regions: Alaska, European Alps, New Zealand Southern Alps, the Central Himalayas, and the Peruvian Andes. These overdeepenings were derived by subtracting ice thickness data from Digital Elevation Models (DEMs) that describe the surface topography. Five ice thickness models were used for all regions: Farinotti''s Ensemble, GlabTop2, Huss and Farinotti were downloaded from Farinotti et al., (2019). OGGM''s ice thickness was downloaded from Farinotti et al., 2019 for all regions except for the Himalayas where it was generated by keeping the default same. Millan''s ice thickness was downloaded from Millan et al., (2022). The primary DEM used was the ALOS PALSAR DEM. For Central Himalayas, in addition to ALOS PALSAR, three other DEMs were used: ASTER, SRTM, and Copernicus. NERC standard grant NE/S013318/1.

  9. H

    Senegal Land Capability Classification

    • dataverse.harvard.edu
    Updated Sep 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tara Ippolito (2021). Senegal Land Capability Classification [Dataset]. http://doi.org/10.7910/DVN/1RVTAK
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 11, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Tara Ippolito
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Senegal
    Description

    Land Capability Classification 250m resolution Senegal. Considering all potential soil limitations. Built with 250m SoilGrids data 0-100cm and ALOS PALSAR DEM data 30m resolution.

  10. c

    SAR data for Svalbard - Dataset - POLAR-PL Catalog

    • polar.cenagis.edu.pl
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SAR data for Svalbard - Dataset - POLAR-PL Catalog [Dataset]. https://polar.cenagis.edu.pl/dataset/sar_data_for_svalbard
    Explore at:
    Dataset updated
    Jan 31, 2025
    Area covered
    Svalbard
    Description

    Radar satellite (SAR) images for Hornsund: ERS-1, ERS-2, ENVISAT, ALOS Palsar, TerraSAR-X, TandemX-1, acquired between 1992 and 2014. 210 archival SAR data were provided at the SLC level, so that both radiometric and geometric corrections were applied using the same methods, and with the same digital elevation model (2008 DEM SPOT developed by the IPY-SPIRIT Project; Korona et al., 2009). The SAR data were processed in BEAM (http://www.brockmann-consult.de/cms/web/beam).

  11. a

    Watershed boundaries Sidama

    • hub.arcgis.com
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    All for Soil | Vše pro půdu, z.s. (2022). Watershed boundaries Sidama [Dataset]. https://hub.arcgis.com/maps/allforsoil::watershed-boundaries-sidama
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset authored and provided by
    All for Soil | Vše pro půdu, z.s.
    Area covered
    Description

    Layers in this composition were delineated based on the ArcHydro extension. The hydrologically correct ALOS PALSAR digital terrain model was used (cell size = 12,5m). Process of watershed delineation can be burdened with a certain degree of uncertainty, which is determined by the accuracy of the DEM. Due to the great dynamics of erosion processes, the DEM is rapidly becoming obsolete. The size of the grid cell can also play a significant negative role. However, it is still the most accurate digital elevation model that covers the entire area of interest.

  12. n

    Seasonal fluctuations of Hansbreen terminus position - Dataset - iAOS Portal...

    • portal-intaros.nersc.no
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Seasonal fluctuations of Hansbreen terminus position - Dataset - iAOS Portal [Dataset]. https://portal-intaros.nersc.no/dataset/seasonal-fluctuations-of-hansbreen-terminus-position
    Explore at:
    Dataset updated
    Apr 27, 2021
    Area covered
    Hansbreen
    Description

    The position of the terminus of Hansbreen is derived with very high frequency in the period 1991–2015. Over 160 multispectral and Synthetic Aperture Radar (SAR) data were used: LANDSAT 5, LANDSAT 7, LANDSAT 8, Terra ASTER, Alos AVNIR, SPOT 5, ERS-1, ERS-2, ENVISAT, Alos PALSAR, TerraSAR-X, TanDEM-X, and Sentinel-1. Terra ASTER images were orthorectified with use of 2008 DEM SPOT and geocoded in PCI Geomatica and ArcGIS software. Multispectral, already terrain-corrected images were rectified in ArcGIS software. SAR data were provided at the Single Look Complex level and that both radiometric and geometric corrections were applied using the same methods, and with the same digital elevation model (2008 DEM SPOT). The SAR data were processed in BEAM (http://www.brockmann-consult.de/cms/web/beam). Sentinel data downloaded from the Sentinel’s Data Hub were already processed. The satellite data were digitized manually to obtain the front position. The database is the supplement to the paper: M. Błaszczyk, J.A. Jania, M. Ciepły, M. Grabiec, D. Ignatiuk, L. Kolondra, A.Kruss, B. Luks, M. Moskalik, T. Pastusiak, A. Strzelewicz, W. Walczowski, T. Wawrzyniak, Factors controlling terminus position of Hansbreen, a tidewater glacier in Svalbard, Journal of Geophysical Research: Earth Surface, DOI: 10.1029/2020JF005763

  13. c

    Seasonal fluctuations of tidewater glaciers in Hornsund - Dataset - POLAR-PL...

    • polar.cenagis.edu.pl
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Seasonal fluctuations of tidewater glaciers in Hornsund - Dataset - POLAR-PL Catalog [Dataset]. https://polar.cenagis.edu.pl/dataset/seasonal_fluctuations_of_tidewater_glaciers_in_hornsund
    Explore at:
    Dataset updated
    Jan 31, 2025
    Area covered
    Hornsund
    Description

    The positions of the glacier termini in Hornsund are derived with very high frequency in the period 1991–2018. Over 230 multispectral and Synthetic Aperture Radar (SAR) data were used: LANDSAT 5, LANDSAT 7, LANDSAT 8, Terra ASTER, Alos AVNIR, SPOT 5, ERS-1, ERS-2, ENVISAT, Alos PALSAR, TerraSAR-X, TanDEM-X, and Sentinel-1. SAR data were used to detect any variability in the glacier front during the polar night. The satellite data were digitized manually to obtain the ice cliff position. Multispectral images were orthorectified and geocoded in PCI Geomatica and ArcGIS software. SAR data were usually provided at the SLC level, so that both radiometric and geometric corrections could be applied using the same methods, and with the same digital elevation model (2008 DEM SPOT developed by the IPY-SPIRIT Project; Korona et al., 2009). The SAR data were processed in BEAM (http://www.brockmann-consult.de/cms/web/beam). Sentinel data downloaded from the Sentinel’s Data Hub were already processed. Data not published.

  14. f

    DEM, Digital Elevation Model 12,5m - Geoparque Caminhos dos Cânions do Sul...

    • figshare.com
    txt
    Updated May 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    João Henrique Quoos (2025). DEM, Digital Elevation Model 12,5m - Geoparque Caminhos dos Cânions do Sul (DEM Integrado ALOS PALSAR e SIGSC) [Dataset]. http://doi.org/10.6084/m9.figshare.29095208.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 18, 2025
    Dataset provided by
    figshare
    Authors
    João Henrique Quoos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Este - Modelo Digital de Terreno - (MDT ou DEM) representa o relevo da área do Geoparque Caminhos dos Cânions do Sul e entorno, abrangendo parte dos estados de Santa Catarina e Rio Grande do Sul, Brasil. O modelo foi gerado a partir da integração de dois conjuntos de dados:ALOS PALSAR L1 (SAR - Radar de Abertura Sintética): Utilizado para fornecer base altimétrica de média resolução com elevada coerência espacial e qualidade radiométrica. Dados pré-processados para correção de distorções geométricas e remoção de ruído.Modelo de Elevação do SIGSC (Sistema de Informações Geográficas de Santa Catarina): Utilizado como base complementar de alta acurácia regional, particularmente para melhorar a coerência topográfica em áreas críticas do relevo na fronteira entre os estados do Rio Grande do Sul e Santa Catarina.Metodologia de Produção:A fusão dos dados foi realizada por meio de processos de interpolação e mosaico raster no QGIS, priorizando as áreas de maior qualidade em cada fonte e realizando correções de borda e preenchimento de falhas. O produto final foi reprojetado para o sistema UTM, zona 22S, Datum SIRGAS 2000.Características do Produto Final:Resolução espacial: 12,5 metrosSistema de Coordenadas: UTM - Zona 22 SulDatum: SIRGAS 2000Tipo de dado: Raster GeoTIFF (float32) com valores altimétricos em metrosUnidade de medida: Metros acima do nível do marAplicações recomendadas:Análise geomorfológicaGeração de curvas de nível e modelos derivados (sombra, declividade, orientação)Planejamento territorial e ambientalEstudos hidrológicos e geotécnicosVisualizações 3D e simulações de terrenoObservações:Este modelo não deve ser confundido com produtos oficiais do INPE, IBGE ou JAXA. Trata-se de uma integração original elaborada com fins científicos e educacionais, respeitando as licenças de uso dos dados originais.

  15. a

    Micro watersheds AOI kebele (Sidama)

    • hub.arcgis.com
    • data-allforsoil.hub.arcgis.com
    Updated Dec 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    All for Soil | Vše pro půdu, z.s. (2022). Micro watersheds AOI kebele (Sidama) [Dataset]. https://hub.arcgis.com/datasets/dc582bbae9a740c98e4aa21f375eaf15
    Explore at:
    Dataset updated
    Dec 20, 2022
    Dataset authored and provided by
    All for Soil | Vše pro půdu, z.s.
    Area covered
    Description

    The layer was delineated based on the ArcHydro extension. The hydrologically correct ALOS PALSAR digital terrain model was used (cell size = 12,5m). Process of watershed delineation can be burdened with a certain degree of uncertainty, which is determined by the accuracy of the DEM. Due to the great dynamics of erosion processes, the DEM is rapidly becoming obsolete. The size of the grid cell can also play a significant negative role. However, it is still the most accurate digital elevation model that covers the entire area of interest.

  16. Z

    Multi-temporal Landslide Inventory for the Far-Western region of Nepal

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto Muñoz-Torrero Manchado (2020). Multi-temporal Landslide Inventory for the Far-Western region of Nepal [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4290099
    Explore at:
    Dataset updated
    Nov 26, 2020
    Dataset authored and provided by
    Alberto Muñoz-Torrero Manchado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nepal, Far-Western Development Region
    Description

    The Multi-Temporal Landslide Inventory for the Far-Western region of Nepal datasets comprises 26350 different landslide events digitize in form of polygons from Google Earth satellite imagery interpretation. In Google earth has been used for interpretation 93 different sources for 79 different time slices between 2002 and 2018. The maximum scale of interpretation used is 1:1000, meanwhile the scale of digitalization was constant between 1:800 and 1:2000, resulting in a final visualization scale of 1:1000. All landslides in the inventory have been classified between deep-seated and shallow types (attribute field "Depth") by visual interpretation which have been later corroborated with calculations of the elevation differences within the surface of rupture area of the landslides

    The dataset comprises 4 different shapefiles:

    "LandslideInventory_FarWesternNepal_Pol.shp": Shapefile with 26350 Polygon features that bound completely the “zone of depletion” and partially the “zone of accumulation” of each identified landslide. Including completely the surface of rupture and more or less partially the depositional zone of the landslides. Landslide

    "LandslideInventory_FarWesternNepal_Points.shp": Shapefile with 25639 Point features that approximately correspond with the center of the surface of rupture area, the point location within each landslide has ben extracted automatically with GIS tools using ALOS PALSAR (12.5 m) DEM.

    "LandslideInventory_FarWesternNepal_Points_Dated1992_2018.shp": Shapefile with 8778 Point features for landslides in the inventory that have been dated within the period 1992-2018 (attribute field "Year". The dating of the landslides has been perform automatically by an own new toolbox in ArcGIS that compare annual Landsat (4-5, 7 and 8), to find sudden vegetation changes within the areas of the digitized landsldies. The tool has an accuracy of 83% to detect annual dates of activation or reactivations of the inventoried landslides.

    "LandslideInventory_FarWesternNepal_AOI.shp": Shapefile with the Polygon boundary of the landslide inventory Area of Interpretation.

    All shapefiles are in a UTM projected coordinate system UTM44N (WGS84).

    This research was funded by the UK Natural Environment Research Council (NERC) and Department for International Development (DFID) as project NE/P000452/1 (LandslideEVO) under the Science for Humanitarian Emergencies and Resilience (SHEAR) program.

  17. a

    Curvas de nivel 50 metros, Canela, región de Coquimbo, Chile

    • geohublitoral-geografiauc.hub.arcgis.com
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TerrenoIII (2021). Curvas de nivel 50 metros, Canela, región de Coquimbo, Chile [Dataset]. https://geohublitoral-geografiauc.hub.arcgis.com/items/6dd91e8e2ab44d59801ca56a9534cbe7
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    TerrenoIII
    Area covered
    Chile, Coquimbo
    Description

    Palabras clave: medioambiente; curvas de nivel; DEM, MDEResumen: Curvas de nivel creadas a través del DEM ALOS PALSAR, disponible en IDE Chile. Se elige esta imagen por su mejor definición, con 12.5 m por pixel. Se aplica el geoproceso de CONTOUR y SMOOTH, para suavizar y obtener mejor formas de las curvas. Las curvas obtenidas perteneces a las comunas costeras de la región de Coquimbo.Tipo de archivo: líneaAño del archivo: 2020Autor: Nicolás Olivares Uribe, para CIGIDEN.Fuente: DEM ALOS-PALSAR,región de Coquimbo, obtenido desde el IDE ChileRestricciones: Dato abiertoProyección: WGS84 UTM 19S

  18. a

    Curvas 50m Ovalle

    • geohublitoral-geografiauc.hub.arcgis.com
    Updated Jul 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TerrenoIII (2021). Curvas 50m Ovalle [Dataset]. https://geohublitoral-geografiauc.hub.arcgis.com/datasets/a3944fd3313a4b5bb0e7c10ac45beece
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset authored and provided by
    TerrenoIII
    Area covered
    Description

    Palabras clave: medioambiente; curvas de nivel; DEM, MDEResumen: Curvas de nivel creadas a través del DEM ALOS PALSAR, disponible en IDE Chile. Se elige esta imagen por su mejor definición, con 12.5 m por pixel. Se aplica el geoproceso de CONTOUR y SMOOTH, para suavizar y obtener mejor formas de las curvas. Las curvas obtenidas perteneces a las comunas costeras de la región de Coquimbo.Tipo de archivo: líneaAño del archivo: 2020Autor: Nicolás Olivares Uribe, para CIGIDEN.Fuente: DEM ALOS-PALSAR,región de Coquimbo, obtenido desde el IDE ChileRestricciones: Dato abiertoProyección: WGS84 UTM 19S

  19. a

    Curvas de nivel 50 metros,La Higuera, región de Coquimbo, Chile

    • geohublitoral-geografiauc.hub.arcgis.com
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TerrenoIII (2021). Curvas de nivel 50 metros,La Higuera, región de Coquimbo, Chile [Dataset]. https://geohublitoral-geografiauc.hub.arcgis.com/items/c1eeab5666d0408e9d3db3d2dc995ccd
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    TerrenoIII
    Area covered
    Chile, Coquimbo, La Higuera
    Description

    Palabras clave: medioambiente; curvas de nivel; DEM, MDEResumen: Curvas de nivel creadas a través del DEM ALOS PALSAR, disponible en IDE Chile. Se elige esta imagen por su mejor definición, con 12.5 m por pixel. Se aplica el geoproceso de CONTOUR y SMOOTH, para suavizar y obtener mejor formas de las curvas. Las curvas obtenidas perteneces a las comunas costeras de la región de Coquimbo.Tipo de archivo: líneaAño del archivo: 2020Autor: Nicolás Olivares Uribe, para CIGIDEN.Fuente: DEM ALOS-PALSAR, región de Coquimbo, obtenido desde el IDE ChileRestricciones: Dato abiertoProyección: WGS84 UTM 19S

  20. a

    Curvas de nivel 50 metros, Coquimbo, región de Coquimbo, Chile

    • geohublitoral-geografiauc.hub.arcgis.com
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TerrenoIII (2021). Curvas de nivel 50 metros, Coquimbo, región de Coquimbo, Chile [Dataset]. https://geohublitoral-geografiauc.hub.arcgis.com/items/cecfca36e42a46c18c3f0bf0dfc7deba
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    TerrenoIII
    Area covered
    Coquimbo, Chile, Coquimbo
    Description

    Palabras clave: medioambiente; curvas de nivel; DEM, MDEResumen: Curvas de nivel creadas a través del DEM ALOS PALSAR, disponible en IDE Chile. Se elige esta imagen por su mejor definición, con 12.5 m por pixel. Se aplica el geoproceso de CONTOUR y SMOOTH, para suavizar y obtener mejor formas de las curvas. Las curvas obtenidas perteneces a las comunas costeras de la región de Coquimbo.Tipo de archivo: líneaAño del archivo: 2020Autor: Nicolás Olivares Uribe, para CIGIDEN.Fuente: DEM ALOS-PALSAR,región de Coquimbo, obtenido desde el IDE ChileRestricciones: Dato abiertoProyección: WGS84 UTM 19S

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
JAXA EORC, Global PALSAR-2/PALSAR Yearly Mosaic, version 1 [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
Organization logo

Global PALSAR-2/PALSAR Yearly Mosaic, version 1

Related Article
Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset provided by
Japan Aerospace Exploration Agencyhttp://www.jaxa.jp/
Time period covered
Jan 1, 2007 - Jan 1, 2020
Area covered
Earth
Description

A newer version of this dataset with data for 2015-2021 can be found in JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH The global 25m PALSAR/PALSAR-2 mosaic is a seamless global SAR image created by mosaicking strips of SAR imagery from PALSAR/PALSAR-2. For each year and location, the strip data were selected through visual inspection of the browse mosaics available over the period, with those showing minimum response to surface moisture preferentially used. In cases where the availability was limited (e.g., because of the requirement for observations during specific emergencies), data were necessarily selected from the year before or after, including from 2006. Shimada et al. 2014 There is no data for 2011-2014 due to the gap between ALOS and ALOS-2 temporal coverage. The SAR imagery was ortho-rectificatied and slope corrected using the 90m SRTM Digital Elevation Model. A destriping process (Shimada & Isoguchi, 2002, 2010) was applied to equalize the intensity differences between neighboring strips, occurring largely due to seasonal and daily differences in surface moisture conditions. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation: γ₀ = 10log₁₀(DN²) - 83.0 dB Attention: Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter. More information is available in the provider's Dataset Description.

Search
Clear search
Close search
Google apps
Main menu