This Layer is the result of Data pipeline: Alternative Fuel Stations in Los AngelesThe Layer is updated weekly (the underlaying layer covering US and Canada is updated daily) on Sundays around 11 pm.Alternative fuel sources include biodiesel, compressed natural gas, electric, ethanol, hydrogen, liquefied natural gas, propane and renewable diesel. Attributes include the station name, location, access, hours and more. Zoom into the map for more detail.This data is maintained by an Aggregated Live Feed routine that accesses the US Department of Energy's National Renewable Energy Laboratory (NREL) API website.source: NREL Alternate Fuel Stations (ALL)
This packaged data collection contains two sets of two additional model runs that used the same inputs and parameters as our primary model, with the exception being we implemented a "maximum corridor length" constraint that allowed us to identify and visualize the corridors as being well-connected (≤15km) or moderately connected (≤45km). This is based on an assumption that corridors longer than 45km are too long to sufficiently accommodate dispersal. One of these sets is based on a maximum corridor length that uses Euclidean (straight-line) distance, while the other set is based on a maximum corridor length that uses cost-weighted distance. These two sets of corridors can be compared against the full set of corridors from our primary model to identify the remaining corridors, which could be considered poorly connected. This package includes the following data layers: Corridors classified as well connected (≤15km) based on Cost-weighted Distance Corridors classified as moderately connected (≤45km) based on Cost-weighted Distance Corridors classified as well connected (≤15km) based on Euclidean Distance Corridors classified as moderately connected (≤45km) based on Euclidean Distance Please refer to the embedded metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in raster GeoTIFF (.tif) format.
Data layers that document the spatial alternatives for the Florida Keys National Marine Sanctuary Restoration Blueprint's Draft Environmental Impact Statement. Includes spatial data for the four proposed boundary and marine zone alternatives. Related Products:Interactive Mapping ApplicationExplore Alternatives - Story MapSpatial Alternatives Web Map GIS Data - Feature Service
The Alternative Fueling Stations dataset is updated daily from the National Renewable Energy Laboratory (NREL) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). For more information about the update cycle and data collection methods, please refer to https://afdc.energy.gov/stations/#/find/nearest?show_about=true. This dataset shows all station access types (public and private) and statuses (available, planned, and temporarily unavailable) by default. To view only publicly available stations, use the access and status filters. The U.S. Department of Energy collects these data in partnership with Clean Cities coalitions and their stakeholders to help fleets and consumers find alternative fueling stations. Clean Cities coalitions foster the nation's economic, environmental, and energy security by working locally to advance affordable, efficient, and clean transportation fuels and technologies. This data can be found on the Alternative Fuels Data Center: https://doi.org/10.21949/1519144. For more information about the data schema and data dictionary, please see https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/all/#response-fields. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529008
Locations for alternative fuel in Los Angeles CountyThis dataset is maintained through the County of Los Angeles Location Management System. The Location Management System is used by the County of Los Angeles GIS Program to maintain a single, comprehensive geographic database of locations countywide. For more information on the Location Management System, visithttp://egis3.lacounty.gov/lms/.
Chugach National Forest Mangement Area Alternatives 2018
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer is the example dataset provided in the original GitHub Repository for Action 2017.2 on INSPIRE Alternative Encodings from the INSPIRE JRC MIG-T Action 2017.2. It is provided herein as Alternative Encodings Draft GeoJSON imported into ArcGIS Online; this hosted Feature Layer was created from the GeoJSON at the time of import. This layer demonstrates the simplified/flattened address schema developed under MIG-T Action 2017.2 following the guidance provided for community implementations. The remainder of the ArcGIS INSPIRE Open Data streamlined fGDB templates in this collection follow the guidance and document templates laid out by Action 2017.2.Note: This Address point dataset contains only one point as provided through the GitHub Repository.
This layer represents the planned or future transit alternatives for Prince William County including mass transit, rail, ferry, and other transportation alternatives. The layer shows the planned or future possibilities for reducing the number of vehicles on area roadways. It includes transportation options like VRE, PRTC, high-capacity transit (bus and other options) that are in the Mobility Chapter of the Comprehensive Plan.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Areas Undergoing Restoration Supporting TMDL Implementation (4b – Reasonable Assurance Plan or 4e – Pollutant Reduction). These are local restoration strategies similar to BMAPs, but developed without going through the BMAP process.
The Alternative Fuel Corridors dataset was created in 2016 and was updated on January 16, 2025 with new Round 8 designations from the Federal Highway Administration (FHWA) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The dataset is a highway layer of corridors, primarily along the NHS, that are designated as Corridor Ready or Corridor Pending. It includes designations of five types of alternative fuels, Electric Vehicle Charging (EV), Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Propane (LPG), and Hydrogen. Corridor-ready segments currently contain a sufficient number of fueling facilities to allow for corridor travel with the designated alternative fuel, and to qualify for highway signage. Corridors that do not have sufficient alternative fuel facilities to support alternative fuel vehicle travel are designated as corridor pending. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529007
The Alternative GWPC layer is to be used when evaluating the Alternative GWPC provision, section 22a-133k-3(d)(2) of the RSRs, amended on February 16, 2021. This layer represents the GA groundwater classification area where an Alternative GWPC could be eligible if a groundwater plume is located in the designated Alternative Groundwater Protection Criteria area and all other requirements of 22a-133k-3(d)(2) have been satisfied. The layer provides more flexibility in achieving groundwater compliance in areas with no current or future drinking water use.
Maryland locations of Liquefied Natural Gas Fuel Stations, Compressed Natural Gas Fuel Stations, Biodiesel Fuel Stations, and Electric Vehicle Charging Stations.
All of Florida's surface waters are classified according to designated uses (Classes I-V). Water quality criteria that support the classes (and therefore, uses) apply uniformly to all waters within the state that have the same classification. Florida recognizes that with the variety of waters found here and a broad approach to them, there may be situations where a generally applicable statewide criterion may not be appropriate for a waterbody or portion of a waterbody. A Site Specific Alternative Criterion, or SSAC, is a water quality criterion developed for a particular waterbody or segment of a waterbody that is designed to more accurately reflect site specific conditions. Criteria, including site specific criteria, are one of the components of Florida?s surface water quality standards, and are intended to protect designated and existing uses of the state waters. Development of an approvable site specific criterion is dependent on a demonstration that the different water quality criterion is more appropriate for the waterbody than the one normally used for the classification. A SSAC recognizes and accounts for the specific needs of the biological community native to the waterbody to make sure they are fully protected. When approved, a SSAC is used instead of (or sometimes in conjunction with) the surface water criterion that applies to the waters for that classification. This data layer should be used on conjunction with the surface water classification data layers (poly and line).
Through a nationwide network of local coalitions, Clean Cities provides project assistance to help stakeholders in the public and private sectors deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and emerging transportation technologies. Department of Energy collects this data as part of the Projects undertaken by Clean Cities coalitions and stakeholders to ensure customers access to clean alternative energy. This data can be found at the Department of Energy Alternative Fuels Data Center Web Feature Service: http://www.afdc.energy.gov/locator/stations/. Clean Cities is the deployment arm of the U.S. Department of Energy's (DOE) Vehicle Technologies Office.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/Transportation/MD_AlternativeFuel/FeatureServer/3
THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICS
http://www.esri.com/geoinquiries
The GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core mathematics national curriculum standards.
All Mathematics GeoInquiries™ can be found at: http://eseriurl.com/mathGeoInquiries
All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
This is a collection of maps, layers, apps and dashboards that show population access to essential retail locations, such as grocery stores. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes
General Accessibility Creative Commons All data products available from the data hub are provided on an 'as is' basis. The City of Sydney (City) makes no warranty, representation or guarantee of any type as to any errors and omissions, or as to the content, accuracy, timeliness, completeness or fitness for any particular purpose or use of any data product available from the data hub. If you find any information that you believe may be inaccurate, please email the City. In addition, please note that the data products available from the data hub are not intended to constitute advice and must not be used as a substitute for professional advice. The City may modify the data products available from the data hub and/or discontinue providing any or all of data products at any time and for any reason, without notice. Accordingly, the City recommends that you regularly check the data hub to ensure that the latest version of data products is used. The City recommends that when accessing data sets, you use APIs. We are committed to making our website as accessible and user-friendly as possible. Web Content Accessibility Guidelines (WCAG) cover a wide set of recommendations to make websites accessible. For more information on WCAG please visit https://www.w3.org/TR/WCAG21/ . This site is built using Esri's ArcGIS Hubs template, and their Accessibility status report is available online at https://hub.arcgis.com/pages/a11y. We create the maps and stories on this site using ArcGIS templates, each template having accessibility features. Examples include Instant Apps, Story maps, and Webapp builder. If you would like to request alternative formats for data products on this site please email the City. We encourage developers using our data to deliver maps and applications with consideration to accessibility for all. Design elements can include colour, contrast, symbol size and style, font size and style, basemap style, alternate text for images, and captions for video and audio. Alternative content such as static maps may sometimes be required. Unless otherwise stated, data products available from the data hub are published under Creative Commons licences. Creative Commons licences include terms and conditions about how licensed data products may be used, shared and/or adapted. Depending on the applicable licence, licensed data products may or may not be used for commercial purposes. The applicable Creative Commons licence for specific data is specified in the "Licence" section of the data description. By accessing, sharing and/or adapting licensed data products, you are deemed to have accepted the terms and conditions of the applicable Creative Common licence. For more information about Creative Commons licences, please visit https://creativecommons.org.au/ and https://creativecommons.org/faq/ If you believe that the applicable Creative Commons licence for the data product that you wish to use is overly restrictive for how you would like to use the data product, please email the City. Contact If you have a question, comments, or requests for interactive maps and data, we would love to hear from you. Council business For information on rates, development applications, strategies, reports and other council business, see the City of Sydney's main website.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. Through a nationwide network of local coalitions - Clean Cities provides project assistance to help stakeholders in the public and private sectors deploy alternative and renewable fuels - idle-reduction measures - fuel economy improvements - and emerging transportation technologies. Department of Energy collects this data as part of the Projects undertaken by Clean Cities coalitions and stakeholders to ensure customers access to clean alternative energy. This data can be found at the Department of Energy Alternative Fuels Data Center Web Feature Service: http://www.afdc.energy.gov/locator/stations/Clean Cities is the deployment arm of the U.S. Department of Energy's (DOE) Vehicle Technologies Office. Last Updated: 06/2013 Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/Transportation/MD_AlternativeFuel/FeatureServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
This Layer is the result of Data pipeline: Alternative Fuel Stations in Los AngelesThe Layer is updated weekly (the underlaying layer covering US and Canada is updated daily) on Sundays around 11 pm.Alternative fuel sources include biodiesel, compressed natural gas, electric, ethanol, hydrogen, liquefied natural gas, propane and renewable diesel. Attributes include the station name, location, access, hours and more. Zoom into the map for more detail.This data is maintained by an Aggregated Live Feed routine that accesses the US Department of Energy's National Renewable Energy Laboratory (NREL) API website.source: NREL Alternate Fuel Stations (ALL)