41 datasets found
  1. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-55097
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.

  3. r

    Input data files for habitat network analyses of amphibians in the...

    • researchdata.se
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oskar Kindvall (2024). Input data files for habitat network analyses of amphibians in the Gothenburg region [Dataset]. http://doi.org/10.5878/dn29-z128
    Explore at:
    (20064), (5417426)Available download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    Chalmers University of Technology
    Authors
    Oskar Kindvall
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Gothenburg, Mölndal Municipality
    Description

    This data package includes two related data files that can be used as input for habitat network analyses on amphibians using a specific habitat network analysis tool (HNAT; v0.1.2-alpha):

    1. AmphibianHabitatNetwork_Parameters.xlsx
    2. BiotopeMap_GothenburgRegion_withPondsRoadsAndBuildings.tif

    HNAT is a plugin for the open-source Geographic Information System QGIS (https://qgis.org/en/site/). HNAT can be downloaded at https://github.com/SMoG-Chalmers/hnat/releases/tag/v0.1.2-alpha. To run the habitat network analyses based on the input data provided in this package one must install the plugin HNAT into QGIS. This software has been created by Chalmers within a research project financed by the Swedish government research council for sustainable development, Formas (FR -2021/0004), within the framework of the national research program "From research to implementation for a sustainable society 2021". The Excel-file contains the parameters for amphibians and the GeoTiff-file is representing a biotope raster map covering the Gothenburg region in western Sweden. SRID=3006 (Sweref99 TM). Pixel size =10x10 metres. The pixel values of the biotope map correspond to the biotope codes listed in the in the parameter file (see column “BiotopeCode”). For each biotope the parameter file holds biotope specific parameter values for two alternative amphibian models denoted “Amphibians_NMDWater_ponds” and Amphibians_NMDWater_ponds_NoFriction”. The two alternative parameter settings can be used to demonstrate the difference in model prediction with or without the assumption that amphibian movements are affected by barrier effects caused by roads, buildings and certain biotopes biotope types. The “NoFriction” version assumes that amphibian dispersal probability declines exponentially with increasing Euclidian distance whereas the other set assumes dispersal to be affected by barriers. Read the readme file for details on each parameter provided in the parameter file.

    The GeoTiff-file is a biotope mape which has been created by combining a couple of publicly available geodata sets. As a base for the biotope map the Swedish land cover map NMD was used (https://geodata.naturvardsverket.se/nedladdning/marktacke/NMD2018/NMD2018_basskikt_ogeneraliserad_Sverige_v1_1.zip). To achieve a greater cartographic representation of small ponds, streams, buildings and transport infrastructure relevant for amphibian dispersal, reproduction and foraging, NMD was complemented by information from a number of vector layers. In total, 20 new biotope classes representing buildings of different height ranging from less than 5 m up to 100 m, were added to the basic land cover map. The heights were obtained by analyzing the LiDAR data provided by Swedish Land Survey (for details see Berghauser Pont et al., 2019). The data was rasterized and added on top of existing pixels representing buildings in the Swedish land cover map. The roads were separated into 101 new biotope classes with different expected number of vehicles per day. Instead of using statistics from the Swedish Transport Administration on observed number of vehicles per day relative traffic volumes were predicted based on angular betweenness centrality values calculated from the road network using PST (Place Syntax Tool, Stavroulaki et al. 2023). PST is an open-source plugin for QGIS (https://www.smog.chalmers.se/pst). Traffic volumes are expected to be correlated to the centrality values (Serra and Hillier, 2019). The vector layer with the centrality values was buffered by 15 m prior to rasterization. After that the new pixel values were added to the basic Land cover raster in sequence following the order of centrality values. Information on small streams with a maximum width of 6 m was added from a vector layer of Swedish streams (https://www.lantmateriet.se/en/geodata/geodata-products/product-list/topography-50-download-vector/). These lines where rasterized and added to the land cover raster by replacing the underlaying pixel values with new class specific pixel values. Small pondlike waterbodies was identified from the NMD data selecting contiguous fragments of the original NMD biotope class 61 with a smaller area than 1 hectare. Pixels representing the smaller water bodies was then changed to 201.

    References Berghauser Pont M, Stavroulaki G, Bobkova E, et al. (2019). The spatial distribution and frequency of street, plot and building types across five European cities. Environment and Planning B: Urban analytics and city science 46(7): 1226-1242. Serra M and Hillier B (2019) Angular and Metric Distance in Road Network Analysis: A nationwide correlation study. Computers, Environment and Urban Systems 74: 194-207. Stavroulaki I, Berghauser Pont M, Fitger M, et al. (2023) PST Documentation_v.3.2.5_20231128, DOI:10.13140/RG.2.2.32984.67845.

  4. Z

    Geodatabase Dataset of the Distribution of Inland Water fish fauna of...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kokkinakis, Antonis (2023). Geodatabase Dataset of the Distribution of Inland Water fish fauna of Freshwater Systems in Northern Greece [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8192745
    Explore at:
    Dataset updated
    Jul 29, 2023
    Dataset provided by
    Panitsidis, Konstandinos
    Georgopoulou, Stella-Sofia,
    Kokkinakis, Antonis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Northern Greece, Greece
    Description

    Abstract

    The dataset is a geodatabase focusing on the distribution of freshwater fish species in Northern Greece. The study area encompasses various lakes and rivers within the regions of Thrace, Eastern, Central, and Western Macedonia, and Epirus. It classifies fish species into three categories based on their conservation status according to the IUCN Red List: Critically Endangered, Endangered, and Vulnerable. The data analysis reveals that the study area is characterized by high fish diversity, particularly in certain ecosystems such as the Evros River, Strymonas River, Aliakmonas River, Axios River, Volvi Lake, Nestos River, and Prespa Lake. These ecosystems serve as important habitats for various fish species. Mapping of the dataset shows the geographic distribution of threatened fish species, indicating that Northern Greece is a hotspot for species facing extinction risks. Overall, the dataset provides valuable insights for researchers, policymakers, and conservationists in understanding the status of fish fauna in Northern Greece and developing strategies for the protection and preservation of these important ecosystems.

    Methods

    Data Collection: The dataset was collected through a combination of field surveys, literature reviews, and the compilation of existing data from various reliable sources. Here's an overview of how the dataset was collected and processed:

    Freshwater Fishes and Lampreys of Greece: An Annotated Checklist

    The Red Book of Endangered Animals of Greece

    The "Red List of Threatened Species"

    The study "Monitoring and Evaluation of the Conservation Status of Fish Fauna Species of Community Interest in Greece"

    The international online fish database FishBase

    Data Digitization and Georeferencing: To create a comprehensive database, we digitized and georeferenced the collected data from various sources. This involved converting information from papers, reports, and surveys into digital formats and associating them with specific geographic coordinates. Georeferencing allowed us to map the distribution of fish species within the study area accurately.

    Data Integration: The digitized and georeferenced data were then integrated into a unified geodatabase. The geodatabase is a central repository that contains both spatial and descriptive data, facilitating further analysis and interpretation of the dataset.

    Data Analysis: We analyzed the collected data to assess the distribution of fish species in Northern Greece, evaluate their conservation status according to the IUCN Red List categories, and identify the threats they face in their respective ecosystems. The analysis involved spatial mapping to visualize the distribution patterns of threatened fish species.

    Data Validation: To ensure the accuracy and reliability of the dataset, we cross-referenced the information from different sources and validated it against known facts about the species and their habitats. This process helped to eliminate any discrepancies or errors in the dataset.

    Interpretation and Findings: Finally, we interpreted the analyzed data and derived key findings about the diversity and conservation status of freshwater fish species in Northern Greece. The results were presented in the research paper, along with maps and visualizations to communicate the spatial patterns effectively.

    Overall, the dataset represents a comprehensive and well-processed collection of information about fish fauna in the study area. It combines both spatial and descriptive data, providing valuable insights for understanding the distribution and conservation needs of freshwater fish populations in Northern Greece.

    Usage notes

    The data included with the submission is stored in a geodatabase format, specifically an ESRI Geodatabase (.gdb). A geodatabase is a container that can hold various types of geospatial data, including feature classes, attribute tables, and raster datasets. It provides a structured and organized way to store and manage geographic information.

    To open and work with the geodatabase, you will need GIS software that supports ESRI Geodatabase formats. The primary software for accessing and manipulating ESRI Geodatabases is ESRI ArcGIS, which is a proprietary GIS software suite. However, there are open-source alternatives available that can also work with Geodatabase files.

    Open-source software such as QGIS has support for reading and interacting with Geodatabase files. By using QGIS, you can access the data stored in the geodatabase and perform various geospatial analyses and visualizations. QGIS is a powerful and widely used open-source Geographic Information System that provides similar functionality to ESRI ArcGIS.

    For tabular data within the geodatabase, you can export the tables as CSV files and open them with software like Microsoft Excel or the open-source alternative, LibreOffice Calc, for further analysis and manipulation.

    Overall, the data provided in the submission is in a geodatabase format, and you can use ESRI ArcGIS or open-source alternatives like QGIS to access and work with the geospatial data it contains.

  5. Data from: The Long-Term Agroecosystem Research (LTAR) Network Standard GIS...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). The Long-Term Agroecosystem Research (LTAR) Network Standard GIS Data Layers, 2020 version [Dataset]. https://catalog.data.gov/dataset/the-long-term-agroecosystem-research-ltar-network-standard-gis-data-layers-2020-version-96132
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/

  6. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-54869
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of approximately $45 billion by 2033. Key drivers include the rising adoption of cloud-based GIS solutions, enhanced data analytics capabilities, the proliferation of location-based services, and the growing need for precise spatial data analysis in various industries like urban planning, geological exploration, and water resource management. The market is segmented by application (Geological Exploration, Water Conservancy Projects, Urban Planning, Others) and type (Cloud-based, Web-based). Cloud-based solutions are gaining significant traction due to their scalability, accessibility, and cost-effectiveness. The increasing availability of high-resolution satellite imagery and advancements in artificial intelligence (AI) and machine learning (ML) are further fueling market expansion. While data security concerns and the high initial investment costs for some advanced solutions present restraints, the overall market outlook remains positive, with significant opportunities for both established players and emerging technology providers. Geographical expansion is another key aspect of market growth. North America and Europe currently hold a significant market share, owing to established GIS infrastructure and early adoption of advanced technologies. However, the Asia-Pacific region is expected to witness rapid growth in the coming years, driven by rising government investments in infrastructure development and increasing urbanization in countries like China and India. Competitive dynamics are shaping the market, with major players like Esri, Autodesk, Hexagon, and Mapbox competing on the basis of software features, data integration capabilities, and customer support. The emergence of open-source GIS solutions like QGIS and GRASS GIS is also challenging the dominance of proprietary software, offering cost-effective alternatives for various applications. The continued development and integration of advanced technologies like 3D mapping, real-time data visualization, and location intelligence will further enhance the capabilities of GIS mapping tools, driving market expansion and innovation across various sectors.

  7. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  8. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-55298
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors: the rising adoption of cloud-based GIS solutions offering enhanced accessibility and scalability, the escalating need for precise spatial data analysis in urban planning and resource management, and the expanding application of GIS in geological exploration for efficient resource discovery and extraction. Furthermore, advancements in location-based services (LBS) and the integration of GIS with other technologies such as IoT and AI are creating new opportunities and driving market expansion. While the market size in 2025 is estimated at $15 billion (a reasonable assumption considering similar market sizes for related technologies), the Compound Annual Growth Rate (CAGR) is projected to remain strong, likely exceeding 8% through 2033. This sustained growth indicates a highly promising market outlook for vendors and investors. However, market growth is not without challenges. High initial investment costs for sophisticated GIS software and the requirement for skilled personnel to operate and maintain these systems can pose barriers to entry, particularly for smaller organizations. Additionally, data security concerns and the need for robust data management strategies are critical factors impacting market adoption. Despite these constraints, the continued integration of GIS tools into various business processes and the growing availability of user-friendly, affordable solutions are expected to mitigate these challenges and propel the market towards sustained and significant growth in the coming years. Segmentation reveals a strong preference for cloud-based solutions due to their flexibility and cost-effectiveness, with the geological exploration and urban planning applications exhibiting the highest growth rates. Key players such as Esri, Autodesk, and Hexagon are strategically positioned to capitalize on these trends.

  9. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  10. d

    Residential Schools Locations Dataset (Geodatabase)

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orlandini, Rosa (2023). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Orlandini, Rosa
    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  11. Data from: Rock Glacier Inventories (RoGI) in 12 areas worldwide using a...

    • zenodo.org
    zip
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Line Rouyet; Tobias Bolch; Francesco Brardinoni; Rafael Caduff; Diego Cusicanqui; Margaret Darrow; Reynald Delaloye; Thomas Echelard; Christophe Lambiel; Lucas Ruiz; Lea Schmid; Flavius Sirbu; Tazio Strozzi; Line Rouyet; Tobias Bolch; Francesco Brardinoni; Rafael Caduff; Diego Cusicanqui; Margaret Darrow; Reynald Delaloye; Thomas Echelard; Christophe Lambiel; Lucas Ruiz; Lea Schmid; Flavius Sirbu; Tazio Strozzi (2024). Rock Glacier Inventories (RoGI) in 12 areas worldwide using a multi-operator consensus-based procedure [Dataset]. http://doi.org/10.5281/zenodo.14501399
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Line Rouyet; Tobias Bolch; Francesco Brardinoni; Rafael Caduff; Diego Cusicanqui; Margaret Darrow; Reynald Delaloye; Thomas Echelard; Christophe Lambiel; Lucas Ruiz; Lea Schmid; Flavius Sirbu; Tazio Strozzi; Line Rouyet; Tobias Bolch; Francesco Brardinoni; Rafael Caduff; Diego Cusicanqui; Margaret Darrow; Reynald Delaloye; Thomas Echelard; Christophe Lambiel; Lucas Ruiz; Lea Schmid; Flavius Sirbu; Tazio Strozzi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rock Glacier
    Description

    The Rock Glacier Inventories and Kinematics community (RGIK) has defined standards for generating Rock Glacier Inventories (RoGI). In the framework of the European Space Agency Climate Change Initiative for Permafrost (ESA CCI Permafrost), we set up a multi-operator mapping exercise in 12 areas around the World. Each RoGI team was composed of five to ten operators, involving 41 persons in total. Each operator performed similar steps following the RGIK guidelines and using a similar QGIS tool. The individual results were compared and combined after common meetings to agree on the final consensus-based solutions. In total, 337 “certain” rock glaciers have been identified and characterised, and 222 additional landforms have been identified as “uncertain” rock glaciers.
    The dataset consists of three GeoPackage files for each area: 1) the Primary Markers (PM) locating and characterising the identified Rock Glacier Units (RGU), 2) the Moving Areas (MA) delineating areas with surface movement associated with the rock glacier creep, based on spaceborne Interferometric Synthetic Aperture Radar (InSAR), and 3) the Geomorphological Outlines (GO) delineating the restricted and extended RGU boundaries. Here we describe the content, structure, and naming convention of the final PM/MA/GO dataset. The RoGI guidelines, the GeoPackage (gpkg) templates for performing similar RoGI in other areas, and exercises based on the QGIS tool are available on the RGIK website.

    Funding: The initiative is funded by the European Space Agency Permafrost Climate Change Initiative (ESA CCI Permafrost, contract 4000123681/18/I-NB). The work of the Rock Glacier Inventories and Kinematics (RGIK) community has been supported by the International Permafrost Association (IPA), GCOS Switzerland, and SwissUniversities.

  12. d

    Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping...

    • datarade.ai
    .json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping Metadata & 5000 Categories [Dataset]. https://datarade.ai/data-products/xverum-geospatial-data-100-verified-locations-230m-poi-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Global GIS & Geospatial Data is a high-precision dataset featuring 230M+ verified points of interest across 249 countries. With rich metadata, structured geographic attributes, and continuous updates, our dataset empowers businesses, researchers, and governments to extract location intelligence and conduct advanced geospatial analysis.

    Perfectly suited for GIS systems, mapping tools, and location intelligence platforms, this dataset covers everything from businesses and landmarks to public infrastructure, all classified into over 5000 categories. Whether you're planning urban developments, analyzing territories, or building location-based products, our data delivers unmatched coverage and accuracy.

    Key Features: ✅ 230M+ Global POIs Includes commercial, governmental, industrial, and service locations - updated regularly for accurate relevance.

    ✅ Comprehensive Geographic Coverage Worldwide dataset covering 249 countries, with attributes including latitude, longitude, city, country code, postal code, etc.

    ✅ Detailed Mapping Metadata Get structured address data, place names, categories, and location, which are ideal for map visualization and geospatial modeling.

    ✅ Bulk Delivery for GIS Platforms Available in .json - delivered via S3 Bucket or cloud storage for easy integration into ArcGIS, QGIS, Mapbox, and similar systems.

    ✅ Continuous Discovery & Refresh New POIs added and existing ones refreshed on a regular refresh cycle, ensuring reliable, up-to-date insights.

    ✅ Compliance & Scalability 100% compliant with global data regulations and scalable for enterprise use across mapping, urban planning, and retail analytics.

    Use Cases: 📍 Location Intelligence & Market Analysis Identify high-density commercial zones, assess regional activity, and understand spatial relationships between locations.

    🏙️ Urban Planning & Smart City Development Design infrastructure, zoning plans, and accessibility strategies using accurate location-based data.

    🗺️ Mapping & Navigation Enrich digital maps with verified business listings, categories, and address-level geographic attributes.

    📊 Retail Site Selection & Expansion Analyze proximity to key POIs for smarter retail or franchise placement.

    📌 Risk & Catchment Area Assessment Evaluate location clusters for insurance, logistics, or regional outreach strategies.

    Why Xverum? ✅ Global Coverage: One of the largest POI geospatial databases on the market ✅ Location Intelligence Ready: Built for GIS platforms and spatial analysis use ✅ Continuously Updated: New POIs discovered and refreshed regularly ✅ Enterprise-Friendly: Scalable, compliant, and customizable ✅ Flexible Delivery: Structured format for smooth data onboarding

    Request a free sample and discover how Xverum’s geospatial data can power your mapping, planning, and spatial analysis projects.

  13. Seilaplan Tutorial: DTM download from swisstopo website

    • envidat.ch
    mp4, not available
    Updated Jun 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Ramstein; Lioba Rath; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont (2025). Seilaplan Tutorial: DTM download from swisstopo website [Dataset]. http://doi.org/10.16904/envidat.343
    Explore at:
    mp4, not availableAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research
    BOKU
    Authors
    Laura Ramstein; Lioba Rath; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    WSL
    Bundesministerium für Landwirtschaft, Regionen und Tourismus Österreich
    Kooperationsplattform Forst Holz Papier
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. As an alternative to using the ‘Swiss Geo Downloader’ plugin, the DTM can be obtained directly from Swisstopo. In this tutorial we explain step by step how to download the necessary DTM from the Swisstopo Website, and how to use it in QGIS for the digital planning of a cable line using the plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to the elevation model on the swisstopo website: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.htmltechnische_details Link to the rope map website: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Als Alternative zum Swiss Geo Downloader erklären wir in diesem Tutorial Schritt für Schritt, wie man das nötige Höhenmodell von der Swisstopo Webseite herunterladen und in QGIS zur Seillinienplanung verwenden kann. Link zum Höhenmodell auf der swisstopo Webseite: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.htmltechnische_details Link zur Seilaplan-Website: https://seilaplan.wsl.ch

  14. d

    Polygon Data | Marinas in US and Canada | Map & Geospatial Insights

    • datarade.ai
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2023). Polygon Data | Marinas in US and Canada | Map & Geospatial Insights [Dataset]. https://datarade.ai/data-products/xtract-io-geometry-data-marinas-in-us-and-canada-xtract
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.

    How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.

    What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.

    Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.

    Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.

  15. d

    Data associated with: Applying remote sensing for large-landscape problems:...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Jun 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Dickie; Branislav Hricko; Christopher Hopkinson; Victor Tran; Monica Kohler; Sydney Toni; Robert Serrouya; Jahan Kariyeva (2023). Data associated with: Applying remote sensing for large-landscape problems: Inventorying and tracking habitat recovery for a broadly distributed Species At Risk [Dataset]. http://doi.org/10.5061/dryad.gxd2547rj
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 19, 2023
    Dataset provided by
    Dryad
    Authors
    Melanie Dickie; Branislav Hricko; Christopher Hopkinson; Victor Tran; Monica Kohler; Sydney Toni; Robert Serrouya; Jahan Kariyeva
    Time period covered
    2023
    Description

    We used ArcGIS 10.7.1. QGIS, R, or similar open-source software are alternatives.

  16. d

    Data for: Transboundary conservation hotspots in China and potential impacts...

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaichong Shi; Li Yang; Colin Chapman; Lu Zhang; Pengfei Fan (2025). Data for: Transboundary conservation hotspots in China and potential impacts of the Belt and Road Initiative [Dataset]. http://doi.org/10.5061/dryad.573n5tb9x
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Kaichong Shi; Li Yang; Colin Chapman; Lu Zhang; Pengfei Fan
    Time period covered
    Jan 1, 2022
    Area covered
    China
    Description

    Aim: Biodiversity hotspots often span international borders, thus conservation efforts must as well. China is one of the most biodiverse countries and the length of its international land borders is the longest in the world; thus, there is a strong need for transboundary conservation. We identify China’s transboundary conservation hotspots and analyze the potential effects of the Belt and Road Initiative (BRI) on them to provide recommendations for conservation actions. Location: China, Asia Methods: We compiled a species list of terrestrial vertebrates that span China’s borders. Using their distribution, we extracted the top 30% of the area with the highest richness value weighted by Red List category and considered these transboundary hotspots for conservation priority. Then we analyzed protected area (PA) coverage and connectivity to identify conservation gaps. To measure the potential impact of the BRI, we counted the species whose distribution range is traversed by the BRI and cal..., Data summary: This is the dataset used in the Diversity and Distributions contribution article "Transboundary conservation hotspots in China and potential impacts of the Belt and Road Initiative". The dataset includes heat maps of the transboundary distribution of terrestrial vertebrates in China drawn by the authors, as well as selected hotspots in the top 30% by value. In addition, a rasterized 0-1 protected area layer for the study area is provided for research reproduction. The heatmap and hotspots of transboundary species distribution were created as follows: We compiled a list of transboundary terrestrial vertebrates in China from the International Union for Conservation of Nature (IUCN) Red List database (https://www.iucnredlist.org/). We downloaded data of all species of mammals, birds, amphibians and reptiles from the database and filtered those living in terrestrial ecosystems. We then filtered these species based on their geographic ranges, to retain species living both in Ch..., R 4.2.0, package include "sf","terra". Or alternative Qgis 3.22, ArcGIS 10.6.

  17. c

    Cleveland City Planning Zoning & Administrative Layers

    • data.clevelandohio.gov
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2024). Cleveland City Planning Zoning & Administrative Layers [Dataset]. https://data.clevelandohio.gov/content/21881eeccd734bdc9a20624bdeabc4b3
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Cleveland
    Description

    Weekly snapshot of Cleveland City Planning Commission datasets that are featured on the City Planning Zoning Viewer. For the official, most current record of zoning info, use the CPC Zoning Viewer.This file is an open-source geospatial (GIS) format called GeoPackage, which can contain multiple layers. It is similar to Esri's file geodatabase format. Free and open-source GIS software like QGIS, or software like ArcGIS, can read the information to view the tables and map the information.It includes the following mapping layers officially maintained by Cleveland City Planning Commission:Planner Assignment AreasPlanned Unit Development OverlayResidential FacilitiesResidential Facilities 1000 ft. BufferPolice DistrictsLandmarks / Historic LayersLocal Landmark PointsLocal Landmark ParcelsLocal Landmark DistrictsNational Historic DistrictsCentral Business DistrictDesign Review RegionsDesign Review DistrictsOverlay Frontage LinesForm & PRO Overlay DistrictsLive-Work Overlay DistrictsSpecific SetbacksStreet CenterlinesZoningUpdate FrequencyWeekly on Mondays at 4:30 AMContactCity Planning Commission, Zoning & Technology

  18. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53819
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, a reasonable estimate based on industry reports and the stated study period (2019-2033) suggests a current market valuation (2025) in the range of $3-5 billion USD. This significant market size is fueled by several key factors. The agricultural sector relies heavily on remote sensing for precision farming, crop monitoring, and yield prediction, significantly contributing to market expansion. Similarly, the water conservancy and forest management sectors utilize satellite imagery and software for resource monitoring, disaster management, and sustainable practices. Government agencies and the public sector increasingly adopt these technologies for urban planning, environmental monitoring, and national security applications. The market's growth is further enhanced by advancements in open-source software, offering cost-effective alternatives and promoting wider adoption. Trends such as cloud-based solutions, improved data processing capabilities, and the integration of artificial intelligence are further accelerating market growth. However, the market faces certain constraints. High initial investment costs for software licenses and specialized hardware can act as a barrier for entry, particularly for smaller businesses and organizations in developing regions. Data security concerns and the need for skilled professionals to interpret the complex data generated also pose challenges. Despite these obstacles, the ongoing development of user-friendly interfaces, coupled with decreasing hardware costs and increasing availability of cloud-based services, is predicted to mitigate these restraints and sustain a healthy compound annual growth rate (CAGR) in the range of 8-12% throughout the forecast period (2025-2033). Segmentation by application (Agriculture, Water Conservancy, Forest Management, Public Sector, Others) and software type (Open Source, Non-Open Source) reveals distinct market dynamics, with the non-open source segment currently holding a larger share due to its advanced capabilities. This trend is expected to continue, though the open-source segment will show considerable growth driven by its affordability and accessibility.

  19. o

    Data from: Location Location Location: Survival of Antarctic biota requires...

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +3more
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Stevens; Andrew Mackintosh (2023). Location Location Location: Survival of Antarctic biota requires the best real-estate [Dataset]. http://doi.org/10.5281/zenodo.7425718
    Explore at:
    Dataset updated
    Sep 11, 2023
    Authors
    Mark Stevens; Andrew Mackintosh
    Area covered
    Antarctica
    Description

    Full details are in the download file "README_Dataset-SurvivalAntarcticBiota.md" Software and file formats used. All maps were created using the Antarctic GIS package 'Quantarctica' (https://www.qgis.org/en/site/about/case_studies/antarctica.html) in QGIS ver. 3.22.7. The ACBRs shown in figure 1 and Supplementary figures S1-S7 are included in an 'Environmental management' layer within Quantarctica and colours were chosen to match those used previously. For the land topography of Antarctica we used the shapefiles from 'Bedmachine' (downloaded from NSIDC, https://nsidc.org/data/nsidc-0756/versions/2) in QGIS ver. 3.22.7. Each input data file was saved as .csv files and imported individually into QGIS for: (1) all individual springtail occurrences (separated into each species), (2) geothermal sites (separated into large and small), (3) geochronological dated sites (separated into high refuge support, and low refuge support), and (4) eDNA signals of springtails. These data were then used to create figures 1 and 2 in the main manuscript, and for more detailed information in figures S1-S7 in Supplementary material. Compiled data accessibility. The .csv data files we used in QGIS for springtail records, geothermal and geochronological sites shown in figures 1 and 2 and figures S1-S7 are available at the Royal Society's figshare portal. We also include our QGIS file used to generate the supplementary figures (QGIS_suppl_figs.qgz) and the .qlr 'layer definition file' (All_layers_definition_QGIS.qlr) exported from QGIS, which can be imported into QGIS with Qantarctica along with Bedmachine, which maintains the symbols and colours we used in our figures.Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: SR200100005 Data collection. We focussed on ice-free terrain represented by 15 currently recognized Antarctic Conservation Biodiversity Regions (ACBRs); we do not include South Orkney Islands. We compiled all published occurrence records for all springtail species considered to be endemic or native from these 15 ACBRs and from our own unpublished records. We obtained the ten geothermal sites used in the analyses by Fraser et al. from their Table S6. We compiled the geochronological data from all known cosmogenic-nuclide data from Antarctica (https://www.ice-d.org/) and from publications that were used to scrutinise the datasets. Cosmogenic dating is uniquely suited to Antarctic environments, however, there are problematic samples and locations. We include a selection of cosmogenic datasets to represent sites that clearly (or potentially) delineate Last Glacial Maximum surface elevations, and reject datasets where results are inconclusive due to isotope inheritance or incomplete or inconclusive results. From the included datasets we divided cosmogenic sites into two categories based on the 100 km radius around each site (using the criteria from Fraser et al.): (1) those that showed unequivocal endemism; and (2) those where the provenance was equivocal. Setting these criteria, and using springtails as a proxy, was critical to identifying regions where glacial refuges for the vast majority of biota were most likely to have occurred. The origin of terrestrial biota in Antarctica has been debated since the discovery of springtails on the first historic voyages to the southern continent more than 120 years ago. A plausible explanation for the long-term persistence of life requiring ice-free land on continental Antarctica has, however, remained elusive. The default glacial eradication scenario has dominated because hypotheses to date have failed to provide a mechanism for their widespread survival on the continent, particularly through the Last Glacial Maximum when geological evidence demonstrates that the ice sheet was more extensive than present. Here, we provide support for the alternative nunatak refuge hypothesis – that ice-free terrain with sufficient relief above the ice sheet provided refuges and was a source for terrestrial biota found today. This hypothesis is supported here by an increased understanding from the combination of biological and geological evidence, and we outline a mechanism for these refuges during successive glacial maxima that also provides a source for coastal species. Our cross-disciplinary approach provides future directions to further test this hypothesis that will lead to new insights into the evolution of Antarctic landscapes and how they have shaped the biota through a changing climate.

  20. d

    Automotive Data | Car Dealers & Repair Shops in US and Canada | Places Data...

    • datarade.ai
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2023). Automotive Data | Car Dealers & Repair Shops in US and Canada | Places Data | Location Data [Dataset]. https://datarade.ai/data-products/xtract-io-polygon-data-new-car-dealers-automotive-store-l-xtract
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    This extensive location dataset offers a comprehensive mapping of automotive businesses across the United States and Canada. Auto industry researchers, business developers, and market analysts can leverage precise location information to understand market distribution, identify potential opportunities, and develop strategic insights into the automotive service sector.

    How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.

    What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.

    Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.

    Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
31 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu