This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our extensive Amazon Product Dataset, featuring detailed information on prices, ratings, sales volume, and more.
This dataset contains product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 - July 2014.
This dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs).
https://brightdata.com/licensehttps://brightdata.com/license
Buy Amazon datasets and get access to over 300 million records from any Amazon domain. Get insights on Amazon products, sellers, and reviews.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.
Amazon-Fraud is a multi-relational graph dataset built upon the Amazon review dataset, which can be used in evaluating graph-based node classification, fraud detection, and anomaly detection models.
Dataset Statistics
# Nodes | %Fraud Nodes (Class=1) |
---|---|
11,944 | 9.5 |
Relation | # Edges |
---|---|
U-P-U | |
U-S-U | |
U-V-U | 1,036,737 |
All |
Graph Construction
The Amazon dataset includes product reviews under the Musical Instruments category. Similar to this paper, we label users with more than 80% helpful votes as benign entities and users with less than 20% helpful votes as fraudulent entities. we conduct a fraudulent user detection task on the Amazon-Fraud dataset, which is a binary classification task. We take 25 handcrafted features from this paper as the raw node features for Amazon-Fraud. We take users as nodes in the graph and design three relations: 1) U-P-U: it connects users reviewing at least one same product; 2) U-S-V: it connects users having at least one same star rating within one week; 3) U-V-U: it connects users with top 5% mutual review text similarities (measured by TF-IDF) among all users.
To download the dataset, please visit this Github repo. For any other questions, please email ytongdou(AT)gmail.com for inquiry.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Gain access to a structured dataset featuring thousands of products listed on Amazon India. This dataset is ideal for e-commerce analytics, competitor research, pricing strategies, and market trend analysis.
Product Details: Name, Brand, Category, and Unique ID
Pricing Information: Current Price, Discounted Price, and Currency
Availability & Ratings: Stock Status, Customer Ratings, and Reviews
Seller Information: Seller Name and Fulfillment Details
Additional Attributes: Product Description, Specifications, and Images
Format: CSV
Number of Records: 50,000+
Delivery Time: 3 Days
Price: $149.00
Availability: Immediate
This dataset provides structured and actionable insights to support e-commerce businesses, pricing strategies, and product optimization. If you're looking for more datasets for e-commerce analysis, explore our E-commerce datasets for a broader selection.
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. This dataset mainly includes reviews (ratings, text) and item metadata (desc- riptions, category information, price, brand, and images). Compared to the pre- vious versions, the 2023 version features larger size, newer reviews (up to Sep 2023), richer and cleaner meta data, and finer-grained timestamps (from day to milli-second).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context:- Amazon.com, Inc. is an American multinational technology company specializing in e-commerce, cloud computing, digital streaming, and artificial intelligence. Founded by Jeff Bezos in 1994, Amazon has grown into one of the world’s most valuable companies, revolutionizing online retail and cloud services through its Amazon Web Services (AWS) division.
As of March 2025 Amazon has a market cap of $2.249 Trillion USD. This makes Amazon the world's 4th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Content:-
This dataset covers Amazon’s daily stock price data from 2000 to 2025. It includes information on:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F14466026%2F5453b54c1a5488a995b51a5f3b23fd84%2FStock%20dataset%20variables.jpg?generation=1740822549719886&alt=media" alt="">
Time-period: 2000–2025
Acknowlegements This dataset belongs to me.I'm sharing it here for free.You may do with it as you wish.
Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.
Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).
Each Dataset contains the following columns : marketplace - 2 letter country code of the marketplace where the review was written. customer_id - Random identifier that can be used to aggregate reviews written by a single author. review_id - The unique ID of the review. product_id - The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id. product_parent - Random identifier that can be used to aggregate reviews for the same product. product_title - Title of the product. product_category - Broad product category that can be used to group reviews (also used to group the dataset into coherent parts). star_rating - The 1-5 star rating of the review. helpful_votes - Number of helpful votes. total_votes - Number of total votes the review received. vine - Review was written as part of the Vine program. verified_purchase - The review is on a verified purchase. review_headline - The title of the review. review_body - The review text. review_date - The date the review was written.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('amazon_us_reviews', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Amazon Bin Image Dataset contains 536,434 images and metadata from bins of a pod in an operating Amazon Fulfillment Center. The bin images in this dataset are captured as robot units carry pods as part of normal Amazon Fulfillment Center operations. This dataset has many images and the corresponding medadata.
The image files have three groups according to its naming scheme.
Amazon Bin Image Dataset File List dataset aims to provide a CSV file to contain all file locations and the quantity to help the analysis and distributed learning.
The Amazon-Google dataset for entity resolution derives from the online retailers Amazon.com and the product search service of Google accessible through the Google Base Data API. The dataset contains 1363 entities from amazon.com and 3226 google products as well as a gold standard (perfect mapping) with 1300 matching record pairs between the two data sources. The common attributes between the two data sources are: product name, product description, manufacturer and price.
The dataset was initially published in the repository of the Database Group of the University of Leipzig: https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
To enable the reproducibility of the results and the comparability of the performance of different matchers on the Amazon-Google matching task, the dataset was split into fixed train, validation and test sets. The fixed splits are provided in the CompERBench repository:
http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/index.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Amazon Review is a dataset to tackle the task of identifying whether the sentiment of a product review is positive or negative. This dataset includes reviews from four different merchandise categories: Books (B) (2834 samples), DVDs (D) (1199 samples), Electronics (E) (1883 samples), and Kitchen and housewares (K) (1755 samples).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MASSIVE is a parallel dataset of > 1M utterances across 51 languages with annotations for the Natural Language Understanding tasks of intent prediction and slot annotation. Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions.
From website:
Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.
Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our Human Dataset featuring 1000 high-resolution (1024x1024) images, equally divided by gender and covering five age groups.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Amazon is a dataset for object detection tasks - it contains Esya annotations for 389 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The Office dataset contains 31 object categories in three domains: Amazon, DSLR and Webcam. The 31 categories in the dataset consist of objects commonly encountered in office settings, such as keyboards, file cabinets, and laptops. The Amazon domain contains on average 90 images per class and 2817 images in total. As these images were captured from a website of online merchants, they are captured against clean background and at a unified scale. The DSLR domain contains 498 low-noise high resolution images (4288×2848). There are 5 objects per category. Each object was captured from different viewpoints on average 3 times. For Webcam, the 795 images of low resolution (640×480) exhibit significant noise and color as well as white balance artifacts.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Access a comprehensive dataset of over 240,000 shoe product listings directly from Amazon UK. This dataset is ideal for researchers, e-commerce analysts, and AI developers looking to explore pricing trends, brand performance, product features, or build training data for retail-focused models.
All data is neatly packaged in a downloadable ZIP archive containing files in JSON format, making it easy to integrate with your preferred analytics or database tools.
Price and discount trend analysis
Competitor benchmarking
Product attribute extraction and modeling
AI/ML training datasets (e.g., shoe recommendation systems)
Retail assortment planning
This dataset is available as a static snapshot, but you can request weekly or monthly updates through the Crawl Feeds dashboard. Upon purchase, the data will be bundled and delivered via a direct download link.
This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper: