Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for amazon reviews for sentiment analysis
Dataset Summary
One of the most important problems in e-commerce is the correct calculation of the points given to after-sales products. The solution to this problem is to provide greater customer satisfaction for the e-commerce site, product prominence for sellers, and a seamless shopping experience for buyers. Another problem is the correct ordering of the comments given to the products. The prominence of misleading… See the full description on the dataset page: https://huggingface.co/datasets/hugginglearners/amazon-reviews-sentiment-analysis.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
About Datasets: - Domain : Marketing - Project: Amazon Product Review Sentiment Analysis - Datasets: Reviews.csv - Dataset Type: Excel Data - Dataset Size: 56L+ records
KPI's: 1. Distribution of Amazon Product Ratings 2. How most people rated the products they bought from Amazon 3. Total of all sentiment scores
Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results
This data contains pandas, seaborn, matplotlib, nltk.sentiment.vader, SentimentIntensityAnalyzer, value_counts(), custom_colors, figsize, pie, sentiment_score
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Amazon Product Reviews Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/amazon-product-reviews-datasete on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains 30K records of product reviews from amazon.com.
This dataset was created by PromptCloud and DataStock
This dataset contains the following:
Total Records Count: 43729
Domain Name: amazon.com
Date Range: 01st Jan 2020 - 31st Mar 2020
File Extension: CSV
Available Fields:
-- Uniq Id,
-- Crawl Timestamp,
-- Billing Uniq Id,
-- Rating,
-- Review Title,
-- Review Rating,
-- Review Date,
-- User Id,
-- Brand,
-- Category,
-- Sub Category,
-- Product Description,
-- Asin,
-- Url,
-- Review Content,
-- Verified Purchase,
-- Helpful Review Count,
-- Manufacturer Response
We wouldn't be here without the help of our in house teams at PromptCloud and DataStock. Who has put their heart and soul into this project like all other projects? We want to provide the best quality data and we will continue to do so.
The inspiration for these datasets came from research. Reviews are something that is important wit everybody across the globe. So we decided to come up with this dataset that shows us exactly how the user reviews help companies to better their products.
This dataset was created by PromptCloud and contains around 0 samples along with Billing Uniq Id, Verified Purchase, technical information and other features such as: - Crawl Timestamp - Manufacturer Response - and more.
- Analyze Helpful Review Count in relation to Sub Category
- Study the influence of Review Date on Product Description
- More datasets
If you use this dataset in your research, please credit PromptCloud
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Amazon Food Products Dataset is a large-scale collection of product listings, reviews, and metadata sourced from Amazon. This dataset is valuable for understanding consumer behaviour, analyzing product trends, and training machine learning models for recommendation systems and sentiment analysis. It includes various categories, providing insights into customer preferences, product ratings, and review sentiments.
Each record in the dataset contains the following key fields:
This dataset is ideal for a variety of applications:
CC0
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset comprises customer reviews for Amazon, an online retail giant, featuring insights into customer experiences, including ratings, review titles, texts, and metadata. It is valuable for analyzing customer satisfaction, sentiment, and trends.
Column Descriptions:
Reviewer Name: Identifies the reviewer. Profile Link: Links to the reviewer's profile for additional insights. Country: Indicates the reviewer's location. Review Count: Number of reviews by the same user, showing engagement level. Review Date: When the review was posted, useful for time analysis. Rating: Numerical satisfaction measure. Review Title: Summarizes the review sentiment. Review Text: Detailed customer feedback. Date of Experience: When the service/product was experienced.
Prospective applications:
Sentiment Analysis: Analyze review texts and titles to assess overall customer sentiment toward products, enabling the identification of strengths and weaknesses. Customer Satisfaction Tracking: Track and visualize rating trends over time to understand fluctuations in customer satisfaction. Product Improvement: Identify common themes in reviews to highlight areas for product enhancement or development. Market Segmentation: Use country and demographic information to customize marketing strategies and gain insights into regional preferences. Competitor Analysis: Evaluate customer feedback on Amazon products in comparison to competitors to determine market positioning. Recommendation Systems: Leverage review data to enhance recommendation algorithms, improving personalized shopping experiences. Trend Analysis: Investigate temporal patterns in reviews to link sentiment changes with marketing efforts or product launches.
This extensive dataset serves as a valuable asset for various analyses focused on enhancing customer engagement and refining business strategies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset: Amazon Customer Review Data for sentiment analysis
Size: 60889 appox.
Format: .CSV
Period: 2013 to 2019
Categories: 5…… (Mobiles, Smart TV, Books, Mobile Accessories, Refrigerator)
Unique_ID: Customized (Primary Key)
Review_Header: user’s comment in few words
Review_Text: User’s comment in details (3-4 lines)
Rating: (1- Very Low, 2 🡪 Low, 3🡪 Avg, 4 🡪 Good, 5 - Excellent)
Posting Period: 2013 to 2019
Own_Rating: for 1-2 🡪 Negative, 3🡪 Neutral, 4-5 🡪 Positive
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford Network Analysis Project (SNAP). This subset contains 1,800,000 training samples and 200,000 testing samples in each polarity sentiment.
Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.
Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).
Each Dataset contains the following columns : marketplace - 2 letter country code of the marketplace where the review was written. customer_id - Random identifier that can be used to aggregate reviews written by a single author. review_id - The unique ID of the review. product_id - The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id. product_parent - Random identifier that can be used to aggregate reviews for the same product. product_title - Title of the product. product_category - Broad product category that can be used to group reviews (also used to group the dataset into coherent parts). star_rating - The 1-5 star rating of the review. helpful_votes - Number of helpful votes. total_votes - Number of total votes the review received. vine - Review was written as part of the Vine program. verified_purchase - The review is on a verified purchase. review_headline - The title of the review. review_body - The review text. review_date - The date the review was written.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('amazon_us_reviews', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Get instant access to Amazon customer reviews. Fully customizable datasets based on your requirements.
Gather product reviews, including fields like product name, product URL, reviewer name, review rating, review text and description, and data points and fields that look interesting for market insights analysis.
Pricing (no order minimums): • <5000 reviews: $0.05 per row • 5001-50000 leads: $0.04 per row • 50000+ rows: $0.03 per row
Fields: • country • countryCode • date • isVerified • position • productAsin • ratingScore • reviewCategoryUrl • reviewDescription • reviewImages/0 • reviewImages/1 • reviewImages/2 • reviewImages/3 • reviewImages/4 • reviewImages/5 • reviewImages/6 • reviewReaction • reviewTitle • reviewUrl • reviewedIn • totalCategoryRatings • totalCategoryReviews • variant
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Unlock detailed insights with our Amazon UK Shoes Products Reviews Dataset, an invaluable resource for businesses, researchers, and data analysts. This dataset features comprehensive information, including product names, review texts, star ratings, and customer feedback for a wide range of shoe products available on Amazon UK.
Whether you're delving into customer behavior, conducting market research, or improving product offerings, this dataset empowers you to make informed decisions. By working with a dataset enriched with real-world feedback, you can:
Explore related datasets like the Amazon product review dataset, offering insights across various categories and regions. For specific needs, our curated product reviews dataset is tailored to help you gain a granular understanding of niche markets.
This dataset consists of a few million Amazon customer reviews (input text) and star ratings (output labels) for learning how to train fastText for sentiment analysis.
The idea here is a dataset is more than a toy - real business data on a reasonable scale - but can be trained in minutes on a modest laptop.
The fastText supervised learning tutorial requires data in the following format:
_label_
Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.
Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.
Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.
Amazon Product Review Dataset (2023)
Dataset Overview
The Amazon Product Review Dataset (2023) contains product reviews from Amazon customers. The dataset includes product information, review details, and metadata about the customers who left the reviews. This dataset can be used for various natural language processing (NLP) tasks, including sentiment analysis, review prediction, recommendation systems, and more.
Dataset Name: Amazon Product Review Dataset (2023) Dataset… See the full description on the dataset page: https://huggingface.co/datasets/kevykibbz/Amazon_Customer_Review_2023.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This is a small subset of dataset of Book reviews from Amazon Kindle Store category.
5-core dataset of product reviews from Amazon Kindle Store category from May 1996 - July 2014. Contains total of 982619 entries. Each reviewer has at least 5 reviews and each product has at least 5 reviews in this dataset. Columns - asin - ID of the product, like B000FA64PK -helpful - helpfulness rating of the review - example: 2/3. -overall - rating of the product. -reviewText - text of the review (heading). -reviewTime - time of the review (raw). -reviewerID - ID of the reviewer, like A3SPTOKDG7WBLN -reviewerName - name of the reviewer. -summary - summary of the review (description). -unixReviewTime - unix timestamp.
There are two files one is preprocessed ready for sentiment analysis and other is unprocessed to you basically have to process the dataset and then perform sentiment analysis
This dataset is taken from Amazon product data, Julian McAuley, UCSD website. http://jmcauley.ucsd.edu/data/amazon/
License to the data files belong to them.
-Sentiment analysis on reviews. -Understanding how people rate usefulness of a review/ What factors influence helpfulness of a review. -Fake reviews/ outliers. -Best rated product IDs, or similarity between products based on reviews alone (not the best idea ikr). -Any other interesting analysis
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford Network Analysis Project (SNAP). This full dataset contains 600,000 training samples and 130,000 testing samples in each class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customer reviews of Amazon products on Amazon website
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for Dataset Name
The Amazon reviews full score dataset is constructed by randomly taking 600,000 training samples and 130,000 testing samples for each review score from 1 to 5. In total there are 3,000,000 trainig samples and 650,000 testing samples.
Dataset Details
Dataset Description
The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 5)… See the full description on the dataset page: https://huggingface.co/datasets/yassiracharki/Amazon_Reviews_for_Sentiment_Analysis_fine_grained_5_classes.
The Amazon Reviews Dataset is a comprehensive collection of customer reviews obtained from the popular e-commerce website, Amazon.com. This dataset encompasses reviews written in 5 different languages, making it a valuable resource for conducting multilingual sentiment analysis and opinion mining.
💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on TrainingData to buy the dataset The dataset's multilingual nature makes it useful for natural language processing tasks, sentiment analysis algorithms, and other machine learning applications that require diverse language data for training and evaluation.
The dataset can be highly valuable in training and fine-tuning machine learning models to automatically classify sentiments, predict customer satisfaction, or extract key information from customer reviews.
Languages in the dataset: Italian German Spainish French English 💴 Buy the Dataset: This is just an example of the data. Leave a request on https://trainingdata.pro/datasets to discuss your requirements, learn about the price and buy the dataset Content For each item, we extracted:
user_name: name of the reviewer stars: number of stars given to the review country: country of the author date: date of the review title: title of the review text: text of the review helpful: number of people who think that the review is helpful Amazon Reviews might be collected in accordance with your requirements. TrainingData provides high-quality data annotation tailored to your needs keywords: reviews dataset, text dataset, product reviews, ratings, user review data, consumer review data, sentiment analysis, product recommendation, llm dataset, language modeling, large language models, text classification, text mining dataset, natural language texts, nlp, nlp open-source dataset, text data
Original Data Source: Amazon Review Dataset LLM
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for amazon reviews for sentiment analysis
Dataset Summary
One of the most important problems in e-commerce is the correct calculation of the points given to after-sales products. The solution to this problem is to provide greater customer satisfaction for the e-commerce site, product prominence for sellers, and a seamless shopping experience for buyers. Another problem is the correct ordering of the comments given to the products. The prominence of misleading… See the full description on the dataset page: https://huggingface.co/datasets/hugginglearners/amazon-reviews-sentiment-analysis.