Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Explore the Amazon Product Reviews Dataset, a treasure trove of valuable insights into customer opinions and sentiments about a wide range of products available on Amazon's platform. This dataset is a goldmine for data enthusiasts, analysts, and machine learning practitioners interested in understanding consumer feedback, sentiment analysis, and product performance evaluation.
Facebook
TwitterAttribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
This dataset provides a free trial sample of best-selling products and their customer reviews from a leading e-commerce platform, designed to support product intelligence, sentiment analysis, and market trend evaluation. This sample is provided for evaluation purposes only. It includes a curated subset of the full dataset. To access the complete dataset, request additional attributes, or explore alternative product segments, please contact the data provider directly.
Key Features
2… See the full description on the dataset page: https://huggingface.co/datasets/datahiveai/Amazon-Reviews-Dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Facebook
TwitterAmazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.
Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).
Each Dataset contains the following columns : marketplace - 2 letter country code of the marketplace where the review was written. customer_id - Random identifier that can be used to aggregate reviews written by a single author. review_id - The unique ID of the review. product_id - The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id. product_parent - Random identifier that can be used to aggregate reviews for the same product. product_title - Title of the product. product_category - Broad product category that can be used to group reviews (also used to group the dataset into coherent parts). star_rating - The 1-5 star rating of the review. helpful_votes - Number of helpful votes. total_votes - Number of total votes the review received. vine - Review was written as part of the Vine program. verified_purchase - The review is on a verified purchase. review_headline - The title of the review. review_body - The review text. review_date - The date the review was written.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('amazon_us_reviews', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterA crucial part of sentiment classification is featuring extraction because it involves extracting valuable information from text data, which affects the model’s performance. The goal of this paper is to help in selecting a suitable feature extraction method to enhance the performance of sentiment analysis tasks. In order to provide directions for future machine learning and feature extraction research, it is important to analyze and summarize feature extraction techniques methodically from a machine learning standpoint. There are several methods under consideration, including Bag-of-words (BOW), Word2Vector, N-gram, Term Frequency- Inverse Document Frequency (TF-IDF), Hashing Vectorizer (HV), and Global vector for word representation (GloVe). To prove the ability of each feature extractor, we applied it to the Twitter US airlines and Amazon musical instrument reviews datasets. Finally, we trained a random forest classifier using 70% of the training data and 30% of the testing data, enabling us to evaluate and compare the performance using different metrics. Based on our results, we find that the TD-IDF technique demonstrates superior performance, with an accuracy of 99% in the Amazon reviews dataset and 96% in the Twitter US airlines dataset. This study underscores the paramount significance of feature extraction in sentiment analysis, endowing pragmatic insights to elevate model performance and steer future research pursuits.
Facebook
Twitterhttps://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford Network Analysis Project (SNAP). This subset contains 1,800,000 training samples and 200,000 testing samples in each polarity sentiment.
Facebook
Twitterhttps://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for "Amazon Beauty Reviews"
Dataset Summary
This dataset consists of reviews of "All Beauty" category from amazon. The data includes all ~700,000 reviews up to 2023. Reviews include product and user information, ratings, and a plain text review.
Supported Tasks and Leaderboards
This dataset can be used for numerous tasks like sentiment analysis, text classification, and user behavior analysis. It's particularly useful for training models to… See the full description on the dataset page: https://huggingface.co/datasets/jhan21/amazon-beauty-reviews-dataset.
Facebook
Twitterhttps://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for "Amazon Food Reviews"
Dataset Summary
This dataset consists of reviews of fine foods from amazon. The data span a period of more than 10 years, including all ~500,000 reviews up to October 2012. Reviews include product and user information, ratings, and a plain text review. It also includes reviews from all other Amazon categories.
Supported Tasks and Leaderboards
This dataset can be used for numerous tasks like sentiment analysis, text… See the full description on the dataset page: https://huggingface.co/datasets/jhan21/amazon-food-reviews-dataset.
Facebook
Twitterhttps://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford Network Analysis Project (SNAP). This full dataset contains 600,000 training samples and 130,000 testing samples in each class.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Dataset consists of reviews of fine foods from amazon.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Labelled dataset of Amazon reviews to be used for sentiment analysis or emotion-cause detection (.csv format)
Machine Learning
Amazon,csv
649979
$200.00
Facebook
TwitterSource: https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
Kaggle kernel take care of the tar.gz files for you :-)
This dataset features slightly older product reviews from Amazon and derives from the Johns Hopkins University’s Department of Computer Science.
unprocessed.tar.gz processed_acl.tar.gz processed_stars.tar.gz
John Blitzer, Mark Dredze, Fernando Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. Association of Computational Linguistics (ACL), 2007. [PDF]
John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jenn Wortman. Learning Bounds for Domain Adaptation. Neural Information Processing Systems (NIPS), 2008. [PDF]
Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-Weighted Linear Classification. International Conference on Machine Learning (ICML), 2008. [PDF]
Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain Adaptation with Multiple Sources. Neural Information Processing Systems (NIPS), 2009.
If you use this data for your research or a publication, please cite the first (ACL 2007) paper as the reference for the data. Also, please drop me a line so I know that you found the data useful.
The Multi-Domain Sentiment Dataset contains product reviews taken from Amazon.com from many product types (domains). Some domains (books and dvds) have hundreds of thousands of reviews. Others (musical instruments) have only a few hundred. Reviews contain star ratings (1 to 5 stars) that can be converted into binary labels if needed. This page contains some descriptions about the data. If you have questions, please email Mark Dredze or John Blitzer.
1) unprocessed.tar.gz contains the original data. 2) processed.acl.tar.gz contains the data pre-processed and balanced. That is, the format of Blitzer et al. (ACL 2007) 3) processed.realvalued.tar.gz contains the data pre-processed and balanced, but with the number of stars, rather than just positive or negative. That is, the format of Mansour et al. (NIPS 2009)
Facebook
TwitterGet instant access to Amazon customer reviews. Fully customizable datasets based on your requirements.
Gather product reviews, including fields like product name, product URL, reviewer name, review rating, review text and description, and data points and fields that look interesting for market insights analysis.
Pricing (no order minimums): • <5000 reviews: $0.05 per row • 5001-50000 leads: $0.04 per row • 50000+ rows: $0.03 per row
Fields: • country • countryCode • date • isVerified • position • productAsin • ratingScore • reviewCategoryUrl • reviewDescription • reviewImages/0 • reviewImages/1 • reviewImages/2 • reviewImages/3 • reviewImages/4 • reviewImages/5 • reviewImages/6 • reviewReaction • reviewTitle • reviewUrl • reviewedIn • totalCategoryRatings • totalCategoryReviews • variant
Facebook
TwitterAPISCRAPY's Amazon Data extraction is a sophisticated solution that leverages AI & web scraping skills to supply organizations with critical data from the Amazon platform. By scraping Amazon you get a product-related Amazon database, including product names, descriptions, pricing, ratings & reviews
Facebook
Twitterhttps://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/
About Dataset
This dataset consists of a few million Amazon customer reviews (input text) and star ratings (output labels) for training fastText models for sentiment analysis. The dataset is based on real business data at a reasonable scale, which can be trained on a modest laptop in minutes.
Content
The fastText supervised learning tutorial requires data in this format: label
X and Y are the class names, without quotes and all on one line.… See the full description on the dataset page: https://huggingface.co/datasets/mrshu/amazonreviews.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Unprocessed review data: CSV textual Dataset for NLP Sentiment analysis scraped from amazon.in using BeatifulSoup4 and pandas Scraping,Preprocessing and Modeling techniques used are available in the code section
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Amazon Sales Dataset includes e-commerce product and consumer feedback data, including details on more than 1,000 products collected from Amazon's official website, discount prices, ratings, reviews, and categories.
2) Data Utilization (1) Amazon Sales Dataset has characteristics that: • The dataset includes a variety of product and review-related attributes, including product ID, product name, category, real and discounted prices, discount rates, ratings, rating numbers, product descriptions, user reviews, images, and product links. (2) Amazon Sales Dataset can be used to: • Product Rating and Review Analysis: Use rating and review data to analyze consumer satisfaction, popular products, review trends, and develop marketing strategies for each product. • Development of Price Policy and Recommendation System: Based on price information such as actual price, discount price, and discount rate, it can be used for price policy analysis, product recommendation system, consumer purchasing behavior prediction, etc.
Facebook
TwitterComprehensive dataset analyzing Amazon product review counts across categories, including 40 reviews average, category-specific benchmarks, and reviews-to-sales ratios based on analysis of 31,900 brands and 12 million product reviews.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for Dataset Name
The Amazon reviews full score dataset is constructed by randomly taking 600,000 training samples and 130,000 testing samples for each review score from 1 to 5. In total there are 3,000,000 trainig samples and 650,000 testing samples.
Dataset Details
Dataset Description
The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 5)… See the full description on the dataset page: https://huggingface.co/datasets/yassiracharki/Amazon_Reviews_for_Sentiment_Analysis_fine_grained_5_classes.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.