Facebook
TwitterIn 2021, Philadelphia, Pennsylvania was the city with the highest poverty rate of the United States' most populated cities. In this statistic, the cities are sorted by poverty rate, not population. The most populated city in 2021 according to the source was New York city - which had a poverty rate of 18 percent.
Facebook
TwitterIn 2021, the city of Philadelphia in Pennsylvania had the highest family poverty rate of the 25 most populated cities in the United States. The city with the next highest poverty rate was Houston, Texas.
Facebook
TwitterThe McAllen-Edinburg-Mission metropolitan area in Texas was ranked first with 27.2 percent of its population living below the poverty level in 2023. Eagle Pass, Texas had the second-highest poverty rate, at 24.4 percent.
Facebook
TwitterIn 2021, New York city had the highest number of people living below the poverty line, with 1.4 million people living in poverty. This is significantly higher than any of the other most populated cities.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of People of All Ages in Poverty in United States (PEAAUS00000A647NCEN) from 1989 to 2023 about child, poverty, persons, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Status by Town reports the number and percentage of people and children living in poverty, by race/ethnicity and age range.
Facebook
TwitterThis map shows the percent of adults 18+ who report 14 or more days during the past 30 days during which their physical health was not good.As stated by the CDC in the methodology:Physical health is an important component of Health-related quality of life (HRQOL), a multi-dimensional concept that focuses on the impact of health status on quality of life.Who is included in this survey?Resident adults aged ≥18 years. Respondents aged ≥18 years who report or do not report the number of days during the past 30 days during which their physical health was not good (excluding those who refused to answer, had a missing answer, or answered “don’t know/not sure”).Data SourceCDC's 2017 500 Cities ProjectArcGIS Living Atlas of the World contains multiple years of 500 Cities CDC layers, which can be found here. For more information about the methodology, visit https://www.cdc.gov/500cities or contact 500Cities@cdc.gov.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Where should we live in the next 10 years? Where should we settle down without relying on public transport? Which city should we move to without fearing losing our homes?
As weather patterns become more unpredictable with aggressive changes in temperatures, I collected some data below to see if there would be a city that could help assess our answers to the prior questions. I am curious to see if cities that typically have great infrastructure for walking, biking or public transit will be better prepared than those that are more typically car centric. Whichever you prefer, we can have a sense on where you might be migrating, and to which areas.
Here's how the data was collected:
The columns have different rating systems. The counties have all major climate risks expected in the future, while corresponding cities in each county have walking, transit and biking scores to assess livability without cars.
Understanding County Climate Risks The counties were were represented on a 1- 10 scale, based on RCP 8.5 levels. Here are the following explanations (0 = lowest, 10 = highest)
1) Heat: Heat is one of the largest drivers changing the niche of human habitability. Rhodium Group researchers estimate that, between 2040 and 2060 extreme temperatures, many counties will face extremely high temperatures for half a year. The measure shows how many weeks per year will we anticipate temperatures to soar above 95 degrees. (0 = 0 weeks, 10 = 26 weeks).
2) Wet Bulb: Wet bulb temperatures occur when heat meets excessive humidity. This is commonplace across cities that have a urban island heat effects (dense concentration of pavements, less nature, higher chances of absorbing heat). That combination creates wet bulb temperatures, where 82 degrees can feel like southern Alabama on its hottest day, making it dangerous to work outdoors and for children to play school sports. As wet bulb temperatures increase even higher, so will the risk of heat stroke — and even death. The measure shows how many days will a county experience high wet bulb temperatures yearly, from 2040 to 2060. (0 = 0 days, 10 = 70 days)
3) Farm Crop Yield: With rising temperatures, it will become more difficult to grow food. Corn and soy are the most prevalent crops in the U.S. and the basis for livestock feed and other staple foods, and they have critical economic significance. Because of their broad regional spread, they offer the best proxy for predicting how farming will be affected by rising temperatures and changing water supplies. As corn and soy production gets more sensitive to heat than drought, the US will see a huge continental divide between cooler counties now having more ability to produce, while current warmer counties loosing all abilities to produce basic crops. The expected measure shows the percent decline yields from 2040 to 2060 (0 = -20.5% decline, 10 = 92% decline).
4) Sea Level Rise: As sea levels rise, the share of property submerged by high tides increases dramatically, affecting a small sliver of the nation's land but a disproportionate share of its population. The rating measures how much of property in the county will go below high tide from 2040 to 2060 (0 = 0%, 10 = 25%).
5) Very Large Fires: With heat and evermore prevalent drought, the likelihood that very large wildfires (ones that burn over 12,000 acres) will affect U.S. regions increases substantially, particularly in the West, Northwest and the Rocky Mountains. The rating calculates how many average number of large fires will we expect to see per year (0 = N/A, 10 = 2.45) from 2040 to 2071.
6) Economic Damages: Rising energy costs, lower labor productivity, poor crop yields and increasing cr...
Facebook
TwitterIn 2024, just over 45 percent of American households had an annual income that was less than 75,000 U.S. dollars. On the other hand, some 16 percent had an annual income of 200,000 U.S. dollars or more. The median household income in the country reached almost 84,000 U.S. dollars in 2024. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Massachusetts, New Hampshire, and Maryland were among the states with the highest median household income in 2024. In terms of income by race and ethnicity, the average income of Asian households was highest, at over 120,000 U.S. dollars, while the median income among Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates the poverty threshold based on the income of various household types. As of 2023, the threshold for a single-person household was 15,480 U.S. dollars. For a family of four, the poverty line increased to 31,200 U.S. dollars. There were an estimated 38.9 million people living in poverty across the United States in 2024, which reflects a poverty rate of 10.6 percent.
Facebook
TwitterBy Danny [source]
This dataset contains US county-level demographic data from 2016, giving insight into the health and economic conditions of counties in the United States. Aggregated and filtered from various sources such as the US Census Small Area Income and Poverty Estimates (SAIPE) Program, American Community Survey, CDC National Center for Health Statistics, and more, this comprehensive dataset provides information on population as well as desert population for each county. Additionally, data is split between metropolitan and nonmetropolitan areas according to the Office of Management and Budget's 2013 classification scheme. Valuable information pertaining to infant mortality rates and total population are also included in this detailed set of data. Use this dataset to gain a better understanding of one of our nation's most essential regions
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Look at the information within the 'About this Dataset' section to have an understanding of what data sources were used to create this dataset as well as any transformations that may have been done while creating it.
- Familiarize yourself with the columns provided in the data set to understand what information is available for each county such as total population (totpop), parental education level (educationLvl), median household income (medianIncome), etc.,
- Use a combination of filtering and sorting techniques to narrow down results and focus in on more specific county demographics that you are looking for such as total households living below poverty line by state or median household income per capita between two counties etc.,
- Keep in mind any additional transformations/simplifications/aggregations done during step 2 when using your data for analysis. For example, if certain variables were pivoted during step two from being rows into columns because it was easier to work with multiple years of income levels by having them all consolidated into one column then be aware that some states may not appear in all records due to those transformations being applied differently between regions which could result in missing values or other inconsistencies when doing downstream analysis on your selected variables.
- Utilize resources such as Wikipedia and government census estimates if you need more detailed information surrounding these demographic characteristics beyond what's available within our current dataset – these can be helpful when conducting further research outside of solely relying on our provided spreadsheet values alone!
- Creating a US county-level heat map of infant mortality rates, offering insight into which areas are most at risk for poor health outcomes.
- Generating predictive models from the population data to anticipate and prepare for future population trends in different states or regions.
- Developing an interactive web-based tool for school districts to explore potential impacts of student mobility on their area's population stability and diversity
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Food Desert.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------| | year | The year the data was collected. (Integer) | | fips | The Federal Information Processing Standard (FIPS) code for the county. (Integer) | | state_fips | The FIPS code for the state. (Integer) | | county_fips | The FIPS code for the county. (Integer)...
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Percent of Population Below the Poverty Level (5-year estimate) in St. Louis city, MO (S1701ACS029510) from 2012 to 2023 about St. Louis City, MO; St. Louis; MO; poverty; percent; 5-year; population; and USA.
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research in recent years has revealed the rate of premature and avoidable deaths from suicide and drug/‌alcohol misuse is rising in the United States. These are sometimes referred to as deaths of despair based on evidence that they are concentrated in relatively poor communities with less access to social resources and low labor force participation. The pattern was first noted in middle-aged White men but seems to be gradually spreading to other ethnic groups. As a first step in establishing a psychological response to this public health issue, the present article summarizes two studies that compared psychological variables to demographics as predictors of hopefulness. A number of intriguing findings emerged. Despite concerns about American despair and conflict, U.S. residents proved the most hopeful among residents of eight countries. Low-income Americans are particularly hopeful except for low-income Whites. Positive character traits and primal beliefs about the world generally proved to be better predictors of hope than ethnicity, financial status, or their interaction. A number of relationships were found between psychological variables and community demographics. The findings as a group suggest hopefulness is driven more by psychological variables than by life circumstances. It is suggested that psychologists could play an important role in the study of this topic by implementing programs intended to enhance hopefulness in impoverished populations, and by encouraging an intentional communal focus on the importance of enhancing well-being.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We significantly extend our earlier variant of the Schelling model, incorporating a neighborhood Potential function as well as an agent wealth gain function to study the long term evolution of the economic status of neighborhoods in cities. We find that the long term patterns of neighborhood relative economic status (RES) simulated by this model reasonably replicate the empirically observed patterns from American cities. Specifically, we find that larger fractions of rich and poor neighborhoods tend to, on average, retain status for longer than lower- and upper-middle wealth neighborhoods. The use of a Potential function that measures the relative wealth of neighborhoods as the basis for agent wealth gain and agent movement appears critical to explaining these emergent patterns of neighborhood RES. This also suggests that the empirically observed RES patterns could indeed be universal and that we would expect to see these patterns repeated for cities around the world. Observing RES behavior over even longer periods of time, the model predicts that the fraction of poor neighborhoods retaining status remains almost constant over extended periods of time, while the fraction of middle-wealth and rich neighborhoods retaining status reduces significantly over time, tending to zero.
Facebook
TwitterTable from the American Community Survey (ACS) 5-year series on poverty and employment status related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B23025 Employment Status for the Population 16 years and over, B23024 Poverty Status by Disability Status by Employment Status for the Population 20 to 64 years, B17010 Poverty Status of Families by Family Type by Presence of Related Children under 18 years, C17002 Ratio of Income to Poverty Level in the Past 12 Months. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B23025, B23024, B17010, C17002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterVITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Facebook
TwitterIntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
Facebook
TwitterThe Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Facebook
TwitterUrban Institute racial and economic inclusion indexes for 2016; extracted from source: https://apps.urban.org/features/inclusion/?topic=map.
The racial inclusion index is made up of five measures: racial segregation (white/person of color dissimilarity index), homeownership gap, educational attainment gap, poverty rate gap, and share of people of color. All racial gap measures calculate the disparity between white non-Hispanic residents and residents of color. For this analysis, we define people of color as any person identifying in US Census Bureau records as Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or other Pacific Islander, other race, two or more races, or Hispanic or Latino white. We recognize the issues that arise with placing all these groups under one umbrella—both in defining identity in comparison with whiteness and in papering over differences in how different groups experience state-sanctioned, institutionalized, systemic, and individual forms of racism. This broad racial disparity measure allows us to compare cities with differing demographic patterns while limiting the size of sampling error for groups within cities that have small populations.
The economic inclusion index is made up of four measures: income segregation (rank-order information theory index), rent burden, share of 16- to 19-year-olds who are not in school and have not graduated, and working poor. The overall inclusion index is the composite of the racial and economic inclusion indices. The economic health index is made up of four indicators: percentage change in employed people period over period, median family income, unemployment rate, and housing vacancy rate.
Facebook
TwitterIn 2021, Philadelphia, Pennsylvania was the city with the highest poverty rate of the United States' most populated cities. In this statistic, the cities are sorted by poverty rate, not population. The most populated city in 2021 according to the source was New York city - which had a poverty rate of 18 percent.