This map shows the predominant highest level of education for the population age 25+ in the United States. This is shown by county and and census tracts throughout the US. The categories are grouped as:Less than High SchoolHigh SchoolAssociate's DegreeSome CollegeBachelor's Degree or HigherThe data shown is current-year American Community Survey (ACS) data from the US Census. The data is updated each year when the ACS releases its new 5-year estimates. For more information about this data, visit this page.To learn more about when the ACS releases data updates, click here.
According to exit polling in *** key states of the 2024 presidential election in the United States, almost ********** of voters who had never attended college reported voting for Donald Trump. In comparison, a similar share of voters with ******** degrees reported voting for Kamala Harris.
The ACS-ED Maps tool identifies conditions of school-age children in school districts based on data from the U.S. Census Bureau’s American Community Survey Education Tabulation (ACS-ED) 2013-17.The American Community Survey – Education Tabulation (ACS-ED) is an annual, nationwide survey designed to provide communities with reliable and timely demographic, social, economic, and housing data. The U.S. Census Bureau implemented the ACS in 2005 as a replacement for the decennial census long form, and NCES collaborates with the U.S. Census Bureau to create a variety of custom ACS data files that describe the condition of school-age children in the U.S., states, and school districts. The custom NCES files are updated annually and based on ACS five-year period estimates.Population Groups:The ACS Children's tabulation provides characteristics of school-age children with separate iterations based on enrollment and school type. Iterations include: Total Children; Grade-relevant Children; Grade-relevant Children - Enrolled; and Grade-relevant Children - Enrolled Public. Learn more.The ACS Total Population tabulation includes all persons living in households or group quarters. The total population files offered by NCES include estimates for the nation, states, and school districts, ACS estimates for additional geographic areas are available from the U.S. Census Bureau's American FactFinder System. Learn more.
This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the count of total adults (25+) and the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This map shows the percentage of people age 25+ with a bachelor's degree or higher education level. This is shown by state, county, and census tracts throughout the US. Zoom to any city to see the pattern there, or use one of the bookmarks to explore different areas. For more information about the education attainment breakdown from the US Census Bureau, click here.The pop-up is configured to show the overall breakdown of educational attainment for the population 25+. The data shown is current-year American Community Survey (ACS) data from the US Census Bureau. The data is updated each year when the ACS releases its new 5-year estimates. For more information about the data, visit this page.To learn more about when the ACS releases data updates, click here.
Colleges and UniversitiesThe colleges and university dataset is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS), National Center for Education Statistics, US Department of Education. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories.This feature class contains all MEDS/MEDS+ as approved by NGA. For each field the 'Not available' and 'NULL' designations are used to indicate that the data for the particular record and field is currently unavailable and will be populated when and if that data becomes available.
This map shows the percent of Black or African American females that have less than a high school diploma by state, county, and tract using American Community Survey data. The pop-up is configured to show the percent and count of Black or African American females that have less than a high school diploma, total number of Black or African American females, and a chart comparing female and male Black or African American education levels.Map notes: Tracts and Counties that have no Black or African American females have been filtered out of the layer. Remove the filter in the layer properties to draw these areas. Data is from the American Community Survey (ACS) 5 year estimates available in state, county, and tract geographies. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.You can find the previous version of this map here.
This layer shows education levels. Counts are broken down by sex. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2016-2020ACS Table(s): B15002 (Not all lines of these ACS tables are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: March 17, 2022National Figures: data.census.govAdditional Census data notes and data processing notes are available at the Esri Living Atlas Layer:https://tempegov.maps.arcgis.com/home/item.html?id=84e3022a376e41feb4dd8addf25835a3
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
This layer serves as the authoritative geographic data source for all school district area boundaries in California. School districts are single purpose governmental units that operate schools and provide public educational services to residents within geographically defined areas. Agencies considered school districts that do not use geographically defined service areas to determine enrollment are excluded from this data set. In order to view districts represented as point locations, please see the "California School District Offices" layer. The school districts in this layer are enriched with additional district-level attribute information from the California Department of Education's data collections. These data elements add meaningful statistical and descriptive information that can be visualized and analyzed on a map and used to advance education research or inform decision making.
School districts are categorized as either elementary (primary), high (secondary) or unified based on the general grade range of the schools operated by the district. Elementary school districts provide education to the lower grade/age levels and the high school districts provide education to the upper grade/age levels while unified school districts provide education to all grade/age levels in their service areas. Boundaries for the elementary, high and unified school district layers are combined into a single file. The resulting composite layer includes areas of overlapping boundaries since elementary and high school districts each serve a different grade range of students within the same territory. The 'DistrictType' field can be used to filter and display districts separately by type.
Boundary lines are maintained by the California Department of Education (CDE) and are effective in the 2022-23 academic year . The CDE works collaboratively with the US Census Bureau to update and maintain boundary information as part of the federal School District Review Program (SDRP). The Census Bureau uses these school district boundaries to develop annual estimates of children in poverty to help the U.S. Department of Education determine the annual allocation of Title I funding to states and school districts. The National Center for Education Statistics (NCES) also uses the school district boundaries to develop a broad collection of district-level demographic estimates from the Census Bureau’s American Community Survey (ACS).
The school district enrollment and demographic information are based on student enrollment counts collected on Fall Census Day (first Wednesday in October) in the 2022-23 academic year. These data elements are collected by the CDE through the California Longitudinal Achievement System (CALPADS) and can be accessed as publicly downloadable files from the Data & Statistics web page on the CDE website https://www.cde.ca.gov/ds">https://www.cde.ca.gov/ds.
This layer serves as the authoritative geographic data source for all school district area boundaries in California. School districts are single purpose governmental units that operate schools and provide public educational services to residents within geographically defined areas. Agencies considered school districts that do not use geographically defined service areas to determine enrollment are excluded from this data set. In order to view districts represented as point locations, please see the "California School District Offices" layer. The school districts in this layer are enriched with additional district-level attribute information from the California Department of Education's data collections. These data elements add meaningful statistical and descriptive information that can be visualized and analyzed on a map and used to advance education research or inform decision making.School districts are categorized as either elementary (primary), high (secondary) or unified based on the general grade range of the schools operated by the district. Elementary school districts provide education to the lower grade/age levels and the high school districts provide education to the upper grade/age levels while unified school districts provide education to all grade/age levels in their service areas. Boundaries for the elementary, high and unified school district layers are combined into a single file. The resulting composite layer includes areas of overlapping boundaries since elementary and high school districts each serve a different grade range of students within the same territory. The 'DistrictType' field can be used to filter and display districts separately by type.Boundary lines are maintained by the California Department of Education (CDE) and are effective in the 2023-24 academic year . The CDE works collaboratively with the US Census Bureau to update and maintain boundary information as part of the federal School District Review Program (SDRP). The Census Bureau uses these school district boundaries to develop annual estimates of children in poverty to help the U.S. Department of Education determine the annual allocation of Title I funding to states and school districts. The National Center for Education Statistics (NCES) also uses the school district boundaries to develop a broad collection of district-level demographic estimates from the Census Bureau’s American Community Survey (ACS).The school district enrollment and demographic information are based on student enrollment counts collected on Fall Census Day (first Wednesday in October) in the 2023-24 academic year. These data elements are collected by the CDE through the California Longitudinal Achievement System (CALPADS) and can be accessed as publicly downloadable files from the Data & Statistics web page on the CDE website https://www.cde.ca.gov/ds.
This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are special-purpose governments and administrative units designed by state and local officials to provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to develop demographic estimates and to support educational research and program administration. The NCES Common Core of Data (CCD) program is an annual collection of basic administrative characteristics for all public schools, school districts, and state education agencies in the United States. These characteristics are reported by state education officials and include directory information, number of students, number of teachers, grade span, and other conditions. The administrative attributes in this layer were developed from the 2020-2021 CCD collection. For more information about NCES school district boundaries, see: https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries. For more information about CCD school district attributes, see: https://nces.ed.gov/ccd/files.asp.Notes: -1 or M Indicates that the data are missing. -2 or N Indicates that the data are not applicable. -9 Indicates that the data do not meet NCES data quality standards. All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
The National Center for Education Statistics' (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated point locations (latitude and longitude) for public elementary and secondary schools included in the NCES Common Core of Data (CCD). The CCD program annually collects administrative and fiscal data about all public schools, school districts, and state education agencies in the United States. The data are supplied by state education agency officials and include basic directory and contact information for schools and school districts, as well as characteristics about student demographics, number of teachers, school grade span, and various other administrative conditions. CCD school and agency point locations are derived from reported information about the physical location of schools and agency administrative offices. The point locations and administrative attributes in this data layer represent the most current CCD collection. For more information about NCES school point data, see: https://nces.ed.gov/programs/edge/Geographic/SchoolLocations. For more information about these CCD attributes, as well as additional attributes not included, see: https://nces.ed.gov/ccd/files.asp.
-1 or M | Indicates that the data are missing. |
-2 or N | Indicates that the data are not applicable. |
-9 | Indicates that the data do not meet NCES data quality standards. |
This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) educational establishment point data for South America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenity features defined as a query against the hosted feature layer where the amenity value is any of 'school', 'university', 'college', or 'kindergarten'.In OSM, amenities are useful and important facilities for visitors and residents, such as schools and universities. These features are identified with an amenity tag. In OSM, amenity=school is used to identify a place where pupils, normally between the ages of about 6 and 18 are taught under the supervision of teachers. This includes primary and secondary schools. See amenity=college, amenity=university, and amenity=kindergarten for other educational establishments.Zoom in to large scales (e.g. Cities level or 1:160k scale) to see the educational features display. You can click on a feature to get the name and any other available attributes of the feature. The name of the feature will display by default at very large scales (e.g. Building level of 1:2k scale). Labels can be turned off in your map if you prefer.
This layer shows education levels. Counts are broken down by sex. Data is from US Census American Community Survey (ACS) 5-year estimates.Data shown in this layer is a percentage of total households.This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2019-2023ACS Table(s): B15002 (Not all lines of these ACS tables are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 12, 2024National Figures: data.census.gov
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By City of Baltimore [source]
This dataset from the Baltimore Neighborhood Indicators Alliance-Jacob France Institute (BNIA-JFI) gathers information about education and youth across Baltimore. Through tracking 27 indicators grouped into seven categories - student enrollment and demographics, dropout rate and high school completion, student attendance, suspensions and expulsions, elementary and middle school student achievement, high school performance, youth labor force participation, and youth civic engagement - BNIA-JFI paints a comprehensive picture of education trends within the city limits. Data sourced from the Baltimore City Public School System (BCPSS), American Community Survey (ACS), as well as Maryland Department of Education allows for cross program comparison to better map connections between educational outcomes affected by neighborhood context. The 2009-2010 school year was used based on readily available data with an approximated 3.4% of address unable to be matched or geocoded and therefore not included in these calculations. Leveraging this data provides perspective to help guide decisions made at local government level that could impact thousands of lives in years ahead
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains valuable information about the educational performance and youth engagement in Baltimore City. It provides data on 27 indicators, grouped into seven categories: student enrollment and demographics; dropout rate and high school completion; student attendance, suspensions and expulsions; elementary and middle school student achievement; high school performance; youth labor force participation; and youth civic engagement. This dataset can be used to answer important questions about education in Baltimore, such as examining the relationship between community conditions and educational outcomes.
Before using this dataset, it’s important to understand the source of data for each indicator (e.g., Baltimore City Public School System, American Community Survey) so you can understand potential limitations inherent in each data set. Additionally, keep in mind that this dataset does not include students whose home address cannot be geocoded or matched between datasets due to inconsistency of information or other issues - this means that comparisons between some of these indicators may not be as accurate as is achievable with other datasets available from sources such as the Maryland Department of Education or the Baltimore City Public Schools System.
Once you are familiar with where the data comes from you can use it to answer these questions by exploring different trends within Baltimore city over time:
- How have student enrollment numbers changed over time?
- What has been the overall trend in dropout rates across elementary schools?
- Are there any differences in student attendance based on school type?
- What correlations exist between neighborhood community characteristics (such as crime rates or poverty levels), and academic achievement scores?
- How have rates of labor force participation among adolescents shifted year-over-year?
And more! By looking at trends by geography within this diverse city we can gain valuable insight into what factors may play a role influencing educational outcomes for children growing up in different areas around Baltimore City - an essential step for developing methodologies for successful policy interventions targeting our most vulnerable populations!
- Analyzing the correlation between student achievement and socio-economic status of the neighborhoods in which students live.
- Creating targeted policies that are tailored to address specific educational issues showcased in each Baltimore neighborhood demographic.
- Using data visualizations to demonstrate to residents and community leaders how their area is performing compared to other communities in terms of education, dropout rates, suspension rates, and more
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. [See Other Information](https://creativecommons.org/public...
Table from the American Community Survey (ACS) 5-year series on education enrollment and attainment related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B14007/B14002 School Enrollment, B15003 Educational Attainment. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
The map title is Forest Types. Map scale. North arrow pointing to the north. Map projection is Hammer-Aitoff. Border of Canada. Great Lakes Border for each theme category within Canada. Neat line around the map. Each theme category is identified by a number that corresponds to the legend. Legend is divided into six categories: West Coast forest, Montane forest, Taiga forest, Boreal forest, Mixed forest, No forest. Tactile maps are designed with Braille, large text, and raised features for visually impaired and low vision users. The Tactile Maps of Canada collection includes: (a) Maps for Education: tactile maps showing the general geography of Canada, including the Tactile Atlas of Canada (maps of the provinces and territories showing political boundaries, lakes, rivers and major cities), and the Thematic Tactile Atlas of Canada (maps showing climatic regions, relief, forest types, physiographic regions, rock types, soil types, and vegetation). (b) Maps for Mobility: to help visually impaired persons navigate spaces and routes in major cities by providing information about streets, buildings and other features of a travel route in the downtown area of a city. (c) Maps for Transportation and Tourism: to assist visually impaired persons in planning travel to new destinations in Canada, showing how to get to a city, and streets in the downtown area.
This map shows the predominant highest level of education for the population age 25+ in the United States. This is shown by county and and census tracts throughout the US. The categories are grouped as:Less than High SchoolHigh SchoolAssociate's DegreeSome CollegeBachelor's Degree or HigherThe data shown is current-year American Community Survey (ACS) data from the US Census. The data is updated each year when the ACS releases its new 5-year estimates. For more information about this data, visit this page.To learn more about when the ACS releases data updates, click here.