Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
As of April 26, 2023, around 27 percent of total COVID-19 deaths in the United States have been among adults 85 years and older, despite this age group only accounting for two percent of the U.S. population. This statistic depicts the distribution of total COVID-19 deaths in the United States as of April 26, 2023, by age group.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group.
Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool
Data includes:
As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm.
As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON.
“Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results.
Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.
Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.
Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported.
Rates for the most recent days are subject to reporting lags
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
In 2022, the leading causes of death for children aged one to four years in the United States were unintentional injuries and congenital malformations, deformations, and chromosomal abnormalities. At that time, around 31 percent of all deaths among these children were caused by unintentional injuries. Differences in causes of death among children by age Just as unintentional injuries are the leading cause of death among children aged one to four, it is also the leading cause of death for the age groups five to nine and 10 to 14. However, congenital malformations, deformations, and chromosomal abnormalities account for fewer deaths as children become older, while the share of deaths caused by cancer is higher among those aged five to nine and 10 to 14. In fact, cancer is the second leading cause of death among five to nine-year-olds, accounting for around 15 percent of all deaths. Sadly, the second leading cause of death among children aged 10 to 14 is intentional self-harm, with 13 percent of all deaths among those in this age group caused by suicide. Leading causes of death in the United States The leading causes of death in the United States are heart disease and malignant neoplasms. Together, these two diseases accounted for around 40 percent of all deaths in the United States in 2022. That year, COVID-19 was the fourth leading cause of death, with about six percent of all deaths caused by COVID-19. In 2022, the lifetime odds that the average person in the United States would die from heart disease was one in six, while the odds for cancer were one in seven and for COVID-19 one in 23.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Note: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.
This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.
The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.
The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.
The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite children and young people (CYP) having a low risk for severe coronavirus disease 2019 (COVID-19) outcomes, there is still a degree of uncertainty related to their risk in the context of immunodeficiency or immunosuppression, primarily due to significant reporting bias in most studies, as CYP characteristically experience milder or asymptomatic COVID-19 infection and the severe outcomes tend to be overestimated.MethodsA comprehensive systematic review to identify globally relevant studies in immunosuppressed CYP and CYP in general population (defined as younger than 25 years of age) up to 31 October 2021 (to exclude vaccinated populations) was performed. Studies were included if they reported the two primary outcomes of our study, admission to intensive therapy unit (ITU) and mortality, while data on other outcomes, such as hospitalization and need for mechanical ventilation were also collected. A meta-analysis estimated the pooled proportion for each severe COVID-19 outcome, using the inverse variance method. Random effects models were used to account for interstudy heterogeneity.FindingsThe systematic review identified 30 eligible studies for each of the two populations investigated: immunosuppressed CYP (n = 793) and CYP in general population (n = 102,022). Our meta-analysis found higher estimated prevalence for hospitalization (46% vs. 16%), ITU admission (12% vs. 2%), mechanical ventilation (8% vs. 1%), and increased mortality due to severe COVID-19 infection (6.5% vs. 0.2%) in immunocompromised CYP compared with CYP in general population. This shows an overall trend for more severe outcomes of COVID-19 infection in immunocompromised CYP, similar to adult studies.InterpretationThis is the only up-to-date meta-analysis in immunocompromised CYP with high global relevance, which excluded reports from hospitalized cohorts alone and included 35% studies from low- and middle-income countries. Future research is required to characterize individual subgroups of immunocompromised patients, as well as impact of vaccination on severe COVID-19 outcomes.Systematic Review RegistrationPROSPERO identifier, CRD42021278598.
As of January 11, 2023, the highest number of deaths due to the coronavirus in Sweden was among individuals aged 80 to 90 years old. In this age group there were 9,124 deaths as a result of the virus. The overall Swedish death toll was 22,645 as of January 11, 2023.
The first case of coronavirus (COVID-19) in Sweden was confirmed on February 4, 2020. The number of cases has since risen to over 2.68 million, as of January 2023. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico, one of the countries severely affected by COVID-19, accumulated more than 5. 1 all-cause excess deaths/1,000 inhabitants and 2.5 COVID-19 confirmed deaths/1,000 inhabitants, in 2 years. In this scenario of high SARS-CoV-2 circulation, we analyzed the effectiveness of the country's vaccination strategy that used 7 different vaccines from around the world, and focused on vaccinating the oldest population first. We analyzed the national dataset published by Mexican health authorities, as a retrospective cohort, separating cases, hospitalizations, deaths and excess deaths by wave and age group. We explored if the vaccination strategy was effective to limit severe COVID-19 during the active outbreaks caused by Delta and Omicron variants. Vaccination of the eldest third of the population reduced COVID-19 hospitalizations, deaths and excess deaths by 46–55% in the third wave driven by Delta SARS-CoV-2. These adverse outcomes dropped 74–85% by the fourth wave driven by Omicron, when all adults had access to vaccines. Vaccine access for the pregnant resulted in 85–90% decrease in COVID-19 fatalities in pregnant individuals and 80% decrease in infants 0 years old by the Omicron wave. In contrast, in the rest of the pediatric population that did not access vaccination before the period analyzed, COVID-19 hospitalizations increased >40% during the Delta and Omicron waves. Our analysis suggests that the vaccination strategy in Mexico has been successful to limit population mortality and decrease severe COVID-19, but children in Mexico still need access to SARS-CoV-2 vaccines to limit severe COVID-19, in particular those 1–4 years old.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo estimate the proportion of SARS-CoV-2 infected children experiencing hospitalization, intensive care unit (ICU) admission, severe outcomes, and death.Data SourcesPubMed, Embase, and MedRxiv were searched for studies published between December 1, 2019 and May 28, 2021. References of relevant systematic reviews were also screened.Study SelectionWe included cohort or cross-sectional studies reporting on at least one outcome measure (i.e., hospitalization, ICU admission, severe outcomes, death) for ≥100 children ≤21 years old within 28 days of SARS-CoV-2 positivity; no language restrictions were applied.Data Extraction and SynthesisTwo independent reviewers performed data extraction and risk of bias assessment. Estimates were pooled using random effects models. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.Main Outcomes and MeasuresPercentage of SARS-CoV-2 positive children experiencing hospitalization, ICU admission, severe outcome, and death.Results118 studies representing 3,324,851 SARS-CoV-2 infected children from 68 countries were included. Community-based studies (N = 48) reported that 3.3% (95%CI: 2.7–4.0%) of children were hospitalized, 0.3% (95%CI: 0.2–0.6%) were admitted to the ICU, 0.1% (95%CI: 0.0–2.2%) experienced a “severe” outcome and 0.02% (95%CI: 0.001–0.05%) died. Hospital-based screening studies (N = 39) reported that 23.9% (95%CI: 19.0–29.2%) of children were hospitalized, 2.9% (95%CI: 2.1–3.8%) were admitted to the ICU, 1.3% (95%CI: 0.5–2.3%) experienced a severe outcome, and 0.2% (95%CI: 0.02–0.5%) died. Studies of hospitalized children (N = 31) reported that 10.1% (95%CI: 6.1–14.9%) of children required ICU admission, 4.2% (95%CI: 0.0–13.8%) had a severe outcome and 1.1% (95%CI: 0.2–2.3%) died. Low risk of bias studies, those from high-income countries, and those reporting outcomes later in the pandemic presented lower estimates. However, studies reporting outcomes after May 31, 2020, compared to earlier publications, had higher proportions of hospitalized patients requiring ICU admission and experiencing severe outcomes.Conclusion and RelevanceAmong children tested positive for SARS-CoV-2, 3.3% were hospitalized, with rates being higher early in the pandemic. Severe outcomes, ICU admission and death were uncommon, however estimates vary by study population, pandemic timing, study risk of bias, and economic status of the country.Systematic Review RegistrationPROSPERO, identifier [CRD42021260164].
As of May 2, 2023, of 34,206 COVID-19 cases deceased in Canada, around 4,058 were aged 60 to 69 years. This statistic shows the number of COVID-19 deaths in Canada as of May 2, 2023, by age.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Since the president of Brazil, in an interview at Flow podcast on August 10, 2022, stated that in COVID, children are asymptomatic, almost never hospitalized, and rarely needed intensive care, which is a huge and dangerous lie. Based on Brazilian Health SUS data provided by the Bolsonaro government itself, we prove the ignorance and risk of mixing ideology and feelings with science and medicine. The most dangerous ignorance is not unknowing, but believing that they have knowledge, being miles away from it. Dataset provided by the opendataSUS platform with all patients notified with a diagnosis of COVID in Brazil between Jan/20 and Aug/22 under 12 years old. Number of cases, hospital admissions, ICU admissions and deaths.
The HM Prison and Probation Service (HMPPS) COVID-19 statistics provides monthly data on the HMPPS response to COVID-19. It addresses confirmed cases of the virus in prisons and the Youth Custody Service sites, deaths across HMPPS service users and mitigating action being taken to limit the spread of the virus and save lives.
Data includes:
In this release information on COVID-19 related deaths and confirmed COVID-19 cases at prison and Youth Custody Service establishment level up to 31 January 2021.
The bulletin was produced and handled by the ministry’s analytical professionals and production staff. For the bulletin pre-release access of up to 24 hours is granted to the following persons:
Lord Chancellor and Secretary of State for Justice; Parliamentary Under Secretary of State; Permanent Secretary; Minister and Permanent Secretary Private Secretaries (x8); Special Advisors (x2); Director General for Policy and Strategy Group; Deputy Director of Data and Evidence as a Service; Head of Profession, Statistics; Head of Prison Safety and Security Statistics; Head of News; Deputy Head of News and relevant press officers (x2).
Chief Executive Officer; Director General Prisons; Chief Executive and Director General Private Secretaries and Heads of Office (x4); Deputy Director of COVID-19 HMPPS Response; Deputy Director Joint COVID 19 Strategic Policy Unit (x2); Director General of Probation and Wales; Executive Director Probation and Women; Executive Director of Youth Custody Service; Executive Director HMPPS Wales; Executive Director, Performance Directorate; Head of Health, Social Care and Substance Misuse Services; Head of Capacity Management and Custodial Capacity Manager.
Prison estate expanded to protect NHS from coronavirus risk
Measures announced to protect NHS from coronavirus risk in prisons
As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.
The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.
Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionRecent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.Materials and methodsWe studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty.ResultsFor child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000–65,000 if it were administered simultaneously with a COVID-19 vaccine
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo estimate the proportion of SARS-CoV-2 infected children experiencing hospitalization, intensive care unit (ICU) admission, severe outcomes, and death.Data SourcesPubMed, Embase, and MedRxiv were searched for studies published between December 1, 2019 and May 28, 2021. References of relevant systematic reviews were also screened.Study SelectionWe included cohort or cross-sectional studies reporting on at least one outcome measure (i.e., hospitalization, ICU admission, severe outcomes, death) for ≥100 children ≤21 years old within 28 days of SARS-CoV-2 positivity; no language restrictions were applied.Data Extraction and SynthesisTwo independent reviewers performed data extraction and risk of bias assessment. Estimates were pooled using random effects models. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.Main Outcomes and MeasuresPercentage of SARS-CoV-2 positive children experiencing hospitalization, ICU admission, severe outcome, and death.Results118 studies representing 3,324,851 SARS-CoV-2 infected children from 68 countries were included. Community-based studies (N = 48) reported that 3.3% (95%CI: 2.7–4.0%) of children were hospitalized, 0.3% (95%CI: 0.2–0.6%) were admitted to the ICU, 0.1% (95%CI: 0.0–2.2%) experienced a “severe” outcome and 0.02% (95%CI: 0.001–0.05%) died. Hospital-based screening studies (N = 39) reported that 23.9% (95%CI: 19.0–29.2%) of children were hospitalized, 2.9% (95%CI: 2.1–3.8%) were admitted to the ICU, 1.3% (95%CI: 0.5–2.3%) experienced a severe outcome, and 0.2% (95%CI: 0.02–0.5%) died. Studies of hospitalized children (N = 31) reported that 10.1% (95%CI: 6.1–14.9%) of children required ICU admission, 4.2% (95%CI: 0.0–13.8%) had a severe outcome and 1.1% (95%CI: 0.2–2.3%) died. Low risk of bias studies, those from high-income countries, and those reporting outcomes later in the pandemic presented lower estimates. However, studies reporting outcomes after May 31, 2020, compared to earlier publications, had higher proportions of hospitalized patients requiring ICU admission and experiencing severe outcomes.Conclusion and RelevanceAmong children tested positive for SARS-CoV-2, 3.3% were hospitalized, with rates being higher early in the pandemic. Severe outcomes, ICU admission and death were uncommon, however estimates vary by study population, pandemic timing, study risk of bias, and economic status of the country.Systematic Review RegistrationPROSPERO, identifier [CRD42021260164].
Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.