100+ datasets found
  1. Percentage of U.S. Americans with any health insurance 1990-2023

    • statista.com
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of U.S. Americans with any health insurance 1990-2023 [Dataset]. https://www.statista.com/statistics/200958/percentage-of-americans-with-health-insurance/
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The percentage of people in the United States with health insurance has increased over the past decade with a noticeably sharp increase in 2014 when the Affordable Care Act (ACA) was enacted. As of 2023, around 92 percent of people in the United States had some form of health insurance, compared to around 84 percent in 2010. Despite the increases in the percentage of insured people in the U.S., there were still over 25 million people in the United States without health insurance as of 2023. Insurance coverage Health insurance in the United States consists of different private and public insurance programs such as those provided by private employers or those provided publicly through Medicare and Medicaid. Almost half of the insured population in the United States were insured privately through an employer as of 2021, while 18.9 percent of people were insured through Medicaid, and 15.4 percent through Medicare . The Affordable Care Act The Affordable Care Act (ACA), enacted in 2014, has significantly reduced the number of uninsured people in the United States. In 2014, the percentage of U.S. individuals with health insurance increased to almost 90 percent. Furthermore, the percentage of people without health insurance reached an all time low in 2022. Public opinion on healthcare reform in the United States remains an ongoing political issue with public opinion consistently divided.

  2. Number of persons without health insurance coverage in the U.S. 1984-2019

    • statista.com
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of persons without health insurance coverage in the U.S. 1984-2019 [Dataset]. https://www.statista.com/statistics/188135/persons-under-65-years-without-health-insurance-in-the-us-since-1984/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the number of persons under 65 years of age without health insurance coverage in the United States from 1984 to 2019. In 2019, there were 32.5 million people in the U.S. without health insurance coverage.

  3. 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries

    • hub.arcgis.com
    • gis-for-racialequity.hub.arcgis.com
    • +1more
    Updated Dec 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/1de77825c6af4da1aab7b51ed8cb9b64
    Explore at:
    Dataset updated
    Dec 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  4. 2023 American Community Survey: B25141 | Homeowners Insurance Costs by...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B25141 | Homeowners Insurance Costs by Mortgage Status (Yearly) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B25141?q=B25141
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  5. Estimated number of less uninsured due to ACA 2015-2025

    • statista.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Estimated number of less uninsured due to ACA 2015-2025 [Dataset]. https://www.statista.com/topics/6702/americans-without-health-insurance/
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    This statistic displays a projection of the number of less uninsured in the United States due to the Affordable Care Act (ACA) from 2015 to 2025. By 2018, there will be some 26 million less uninsured nonelderly people due to the implementation of the ACA.

  6. 2021 American Community Survey: S2701 | SELECTED CHARACTERISTICS OF HEALTH...

    • data.census.gov
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2021 American Community Survey: S2701 | SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table?q=Health&g=795XX00US3603809
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  7. c

    Health Insurance

    • data.clevelandohio.gov
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Health Insurance [Dataset]. https://data.clevelandohio.gov/datasets/ClevelandGIS::health-insurance/explore?showTable=true
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. Where are minority populations with no health insurance?

    • hub.arcgis.com
    • hrtc-oc-cerf.hub.arcgis.com
    Updated Jan 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Where are minority populations with no health insurance? [Dataset]. https://hub.arcgis.com/maps/df5cb40cc03d4f02840decc686ed933a
    Explore at:
    Dataset updated
    Jan 5, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows what percent of the minority population does not have health insurance. Color shows the percent without health insurance compared to total population as size. Areas in yellow are above the national average of 8% of total persons without health insurance.Data is from the American Community Survey (ACS) 5 year estimates available in state, county, and tract geographies. For added context, 2010-2014 ACS layers have been added to show how health insurance coverage for the minority population has changed over time. The symbology is the same for equal comparison. Turn layers on/off and click the popup for more information. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  9. American adults who had to forgo medical care due to cost in 2023, by...

    • statista.com
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    American adults who had to forgo medical care due to cost in 2023, by insurance type [Dataset]. https://www.statista.com/statistics/1399110/americans-who-had-unmet-health-care-needs-due-to-costs-by-type-of-insurance/
    Explore at:
    Dataset updated
    Nov 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, nearly 66 percent of adults without health insurance coverage went without some form of needed medical care due to cost reasons in the United States. Americans with health insurance coverage were less likely to forego medical care in comparison to uninsured adults. This statistic shows the percentage of the adult population with unmet medical needs due to cost reasons in the U.S. in 2023, by health insurance coverage.

  10. 2021 American Community Survey: C27001B | HEALTH INSURANCE COVERAGE STATUS...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2021 American Community Survey: C27001B | HEALTH INSURANCE COVERAGE STATUS BY AGE (BLACK OR AFRICAN AMERICAN ALONE) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2021.C27001B
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  11. Health insurance status of the U.S. population 2023

    • statista.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Health insurance status of the U.S. population 2023 [Dataset]. https://www.statista.com/statistics/238866/health-insurance-status-of-the-total-us-population/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, eight percent of the total population of the United States were uninsured. However, half of all individuals in the United States had employer-sponsored health coverage. This statistic depicts the distribution of health insurance status of the total population in the United States for 2023

  12. N

    United States Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  13. N

    Florida Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Florida Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e75f194-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Florida population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Florida across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Florida was 22,244,823, a 1.91% increase year-by-year from 2021. Previously, in 2021, Florida population was 21,828,069, an increase of 1.10% compared to a population of 21,589,602 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Florida increased by 6,198,675. In this period, the peak population was 22,244,823 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Florida is shown in this column.
    • Year on Year Change: This column displays the change in Florida population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Florida Population by Year. You can refer the same here

  14. N

    Independence, OR Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Independence, OR Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ea7fb48-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Independence
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Independence population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Independence across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Independence was 10,255, a 0.73% increase year-by-year from 2021. Previously, in 2021, Independence population was 10,181, an increase of 1.90% compared to a population of 9,991 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Independence increased by 4,050. In this period, the peak population was 10,255 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Independence is shown in this column.
    • Year on Year Change: This column displays the change in Independence population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Independence Population by Year. You can refer the same here

  15. 2016 American Community Survey: S2701 | SELECTED CHARACTERISTICS OF HEALTH...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2016 American Community Survey: S2701 | SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2016.S2701?q=United%20States%20Health&g=310XX00US12060,15260,12020,42340,17980,40660,19140,31420,23580,25980,46660,47580,10500_040XX00US13&y=2016
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2016
    Area covered
    United States
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2016 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. The 2008 data table in American FactFinder does not incorporate these edits. Therefore, the estimates that appear in these tables are not comparable to the estimates in the 2009 and later tables. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2016 American Community Survey 1-Year Estimates

  16. Census of Population and Housing 1970 - IPUMS Subset - United States

    • microdata.worldbank.org
    Updated Apr 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census of Population and Housing 1970 - IPUMS Subset - United States [Dataset]. https://microdata.worldbank.org/index.php/catalog/2115
    Explore at:
    Dataset updated
    Apr 26, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Minnesota Population Center
    Time period covered
    1970
    Area covered
    United States
    Description

    Abstract

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.

    The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.

    Geographic coverage

    National coverage

    Analysis unit

    Households and Group Quarters

    UNITS IDENTIFIED: - Dwellings: No - Vacant units: Yes - Households: Yes - Individuals: Yes - Group quarters: Yes

    UNIT DESCRIPTIONS: - Households: Dwelling places with fewer than five persons unrelated to a household head, excluding institutions and transient quarters. - Group quarters: Institutions, transient quarters, and dwelling places with five or more persons unrelated to a household head.

    Universe

    Residents of the 50 states (not the outlying areas).

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    MICRODATA SOURCE: U.S. Census Bureau

    SAMPLE UNIT: Household

    SAMPLE FRACTION: 1%

    SAMPLE SIZE (person records): 2,029,666

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    One in five housing units in 1970 received a long form containing supplemental sample questions. There were two versions of the long form, with different inquiries on both housing and population items; 15 percent of households received one version, and 5 percent received the other. Six independent 1 percent public use samples were produced for 1970, three from the 15 percent questionnaire and three from the 5 percent questionnaire. IPUMS-International uses the "Form 2 Metro" sample.

    Response rate

    UNDERCOUNT: No official estimates

  17. N

    North Pole, AK Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). North Pole, AK Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f16b1f7-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Pole
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the North Pole population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of North Pole across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of North Pole was 2,373, a 3.26% increase year-by-year from 2021. Previously, in 2021, North Pole population was 2,298, an increase of 2.32% compared to a population of 2,246 in 2020. Over the last 20 plus years, between 2000 and 2022, population of North Pole increased by 803. In this period, the peak population was 2,373 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the North Pole is shown in this column.
    • Year on Year Change: This column displays the change in North Pole population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for North Pole Population by Year. You can refer the same here

  18. N

    Paulsboro, NJ Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Paulsboro, NJ Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f297238-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Jersey, Paulsboro
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Paulsboro population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Paulsboro across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Paulsboro was 6,249, a 0.60% increase year-by-year from 2021. Previously, in 2021, Paulsboro population was 6,212, an increase of 0.27% compared to a population of 6,195 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Paulsboro increased by 95. In this period, the peak population was 6,249 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Paulsboro is shown in this column.
    • Year on Year Change: This column displays the change in Paulsboro population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Paulsboro Population by Year. You can refer the same here

  19. Share of health insurance coverage among U.S. elderly population in 2022, by...

    • statista.com
    Updated Aug 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of health insurance coverage among U.S. elderly population in 2022, by coverage [Dataset]. https://www.statista.com/statistics/1399391/elderly-population-with-health-insurance-by-coverage-in-the-us/
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, among people aged 65 years and above, 35.7 percent had healthcare coverage through Medicare Advantage. The largest share of older adults in the U.S. were privately insured (with or without Medicare), while only 0.7 percent were uninsured in 2022. This statistic illustrates the distribution of health insurance coverage among adults aged 65 and above in the U.S. in 2022.

  20. Share of U.S. adults without health insurance by poverty level 2019-2023

    • statista.com
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of U.S. adults without health insurance by poverty level 2019-2023 [Dataset]. https://www.statista.com/statistics/1276696/percentage-of-us-adults-without-health-insurance-by-poverty-level/
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, around one fifth of U.S. adults with a family income of less than 100% Federal Poverty Level (FPL) did not have health insurance, the lowest in the provided time interval. This statistic shows the percentage of adults aged 18-64 years without health insurance in the United States from 2019 to 2023, by family income as a percentage of FPL.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Percentage of U.S. Americans with any health insurance 1990-2023 [Dataset]. https://www.statista.com/statistics/200958/percentage-of-americans-with-health-insurance/
Organization logo

Percentage of U.S. Americans with any health insurance 1990-2023

Explore at:
Dataset updated
Oct 22, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The percentage of people in the United States with health insurance has increased over the past decade with a noticeably sharp increase in 2014 when the Affordable Care Act (ACA) was enacted. As of 2023, around 92 percent of people in the United States had some form of health insurance, compared to around 84 percent in 2010. Despite the increases in the percentage of insured people in the U.S., there were still over 25 million people in the United States without health insurance as of 2023. Insurance coverage Health insurance in the United States consists of different private and public insurance programs such as those provided by private employers or those provided publicly through Medicare and Medicaid. Almost half of the insured population in the United States were insured privately through an employer as of 2021, while 18.9 percent of people were insured through Medicaid, and 15.4 percent through Medicare . The Affordable Care Act The Affordable Care Act (ACA), enacted in 2014, has significantly reduced the number of uninsured people in the United States. In 2014, the percentage of U.S. individuals with health insurance increased to almost 90 percent. Furthermore, the percentage of people without health insurance reached an all time low in 2022. Public opinion on healthcare reform in the United States remains an ongoing political issue with public opinion consistently divided.

Search
Clear search
Close search
Google apps
Main menu