100+ datasets found
  1. H

    Political Analysis Using R: Example Code and Data, Plus Data for Practice...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Monogan (2020). Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems [Dataset]. http://doi.org/10.7910/DVN/ARKOTI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Jamie Monogan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.

  2. Sample data analysis

    • kaggle.com
    zip
    Updated Apr 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Hamith (2023). Sample data analysis [Dataset]. https://www.kaggle.com/datasets/abdulhamith/sample-data-analysis
    Explore at:
    zip(998859 bytes)Available download formats
    Dataset updated
    Apr 28, 2023
    Authors
    Abdul Hamith
    Description

    Dataset

    This dataset was created by Abdul Hamith

    Contents

  3. Data from: PISA Data Analysis Manual: SPSS, Second Edition

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2021). PISA Data Analysis Manual: SPSS, Second Edition [Dataset]. https://catalog.data.gov/dataset/pisa-data-analysis-manual-spss-second-edition
    Explore at:
    Dataset updated
    Mar 30, 2021
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    The OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.

  4. cases study1 example for google data analytics

    • kaggle.com
    zip
    Updated Apr 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mohammed hatem (2023). cases study1 example for google data analytics [Dataset]. https://www.kaggle.com/datasets/mohammedhatem/cases-study1-example-for-google-data-analytics
    Explore at:
    zip(25278847 bytes)Available download formats
    Dataset updated
    Apr 22, 2023
    Authors
    mohammed hatem
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.

  5. Considerations for analyzing EMA data (Oleson et al., 2021)

    • asha.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob J. Oleson; Michelle A. Jones; Erik J. Jorgensen; Yu-Hsiang Wu (2023). Considerations for analyzing EMA data (Oleson et al., 2021) [Dataset]. http://doi.org/10.23641/asha.17155961.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    American Speech–Language–Hearing Associationhttps://www.asha.org/
    Authors
    Jacob J. Oleson; Michelle A. Jones; Erik J. Jorgensen; Yu-Hsiang Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Purpose: The analysis of Ecological Momentary Assessment (EMA) data can be difficult to conceptualize due to the complexity of how the data are collected. The goal of this tutorial is to provide an overview of statistical considerations for analyzing observational data arising from EMA studies.Method: EMA data are collected in a variety of ways, complicating the statistical analysis. We focus on fundamental statistical characteristics of the data and general purpose statistical approaches to analyzing EMA data. We implement those statistical approaches using a recent study involving EMA.Results: The linear or generalized linear mixed-model statistical approach can adequately capture the challenges resulting from EMA collected data if properly set up. Additionally, while sample size depends on both the number of participants and the number of survey responses per participant, having more participants is more important than the number of responses per participant.Conclusion: Using modern statistical methods when analyzing EMA data and adequately considering all of the statistical assumptions being used can lead to interesting and important findings when using EMA.Supplemental Material S1. Power for given effect sizes, number of participants, and number of surveys per individual for a two independent groups comparison.Supplemental Material S2. Power for given effect sizes, number of participants, and number of surveys per individual for a paired groups comparison.Oleson, J. J., Jones, M. A., Jorgensen, E. J., & Wu, Y.-H. (2021). Statistical considerations for analyzing Ecological Momentary Assessment data. Journal of Speech, Language, and Hearing Research. Advance online publication. https://doi.org/10.1044/2021_JSLHR-21-00081

  6. c

    Sample Sales Dataset

    • cubig.ai
    zip
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Sample Sales Dataset [Dataset]. https://cubig.ai/store/products/477/sample-sales-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.

    2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.

  7. h

    Example Files to Accompany the Text Book Data Analysis: an Introduction,...

    • harmonydata.ac.uk
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Example Files to Accompany the Text Book Data Analysis: an Introduction, 1961-1992 [Dataset]. http://doi.org/10.5255/UKDA-SN-3208-1
    Explore at:
    Description

    These data are to be used in conjunction with Data Analysis : An Introduction by B. Nolan, available at booksellers.

  8. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://catalog.ihsn.org/index.php/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Economic Research Forum
    Kurdistan Regional Statistics Office (KRSO)
    Central Statistical Organization (CSO)
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  9. Z

    Missing data in the analysis of multilevel and dependent data (Examples)

    • data.niaid.nih.gov
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Grund; Oliver Lüdtke; Alexander Robitzsch (2023). Missing data in the analysis of multilevel and dependent data (Examples) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7773613
    Explore at:
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    IPN - Leibniz Institute for Science and Mathematics Education
    University of Hamburg
    Authors
    Simon Grund; Oliver Lüdtke; Alexander Robitzsch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").

    The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:

    ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)

    In all data sets, missing values are coded as "NA".

  10. Understanding and Managing Missing Data.pdf

    • figshare.com
    pdf
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrahim Denis Fofanah (2025). Understanding and Managing Missing Data.pdf [Dataset]. http://doi.org/10.6084/m9.figshare.29265155.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ibrahim Denis Fofanah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.

  11. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  12. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  13. Pre and Post-Exercise Heart Rate Analysis

    • kaggle.com
    zip
    Updated Sep 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah M Almutairi (2024). Pre and Post-Exercise Heart Rate Analysis [Dataset]. https://www.kaggle.com/datasets/abdullahmalmutairi/pre-and-post-exercise-heart-rate-analysis
    Explore at:
    zip(3857 bytes)Available download formats
    Dataset updated
    Sep 29, 2024
    Authors
    Abdullah M Almutairi
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Overview:

    This dataset contains simulated (hypothetical) but almost realistic (based on AI) data related to sleep, heart rate, and exercise habits of 500 individuals. It includes both pre-exercise and post-exercise resting heart rates, allowing for analyses such as a dependent t-test (Paired Sample t-test) to observe changes in heart rate after an exercise program. The dataset also includes additional health-related variables, such as age, hours of sleep per night, and exercise frequency.

    The data is designed for tasks involving hypothesis testing, health analytics, or even machine learning applications that predict changes in heart rate based on personal attributes and exercise behavior. It can be used to understand the relationships between exercise frequency, sleep, and changes in heart rate.

    File: Filename: heart_rate_data.csv File Format: CSV

    - Features (Columns):

    Age: Description: The age of the individual. Type: Integer Range: 18-60 years Relevance: Age is an important factor in determining heart rate and the effects of exercise.

    Sleep Hours: Description: The average number of hours the individual sleeps per night. Type: Float Range: 3.0 - 10.0 hours Relevance: Sleep is a crucial health metric that can impact heart rate and exercise recovery.

    Exercise Frequency (Days/Week): Description: The number of days per week the individual engages in physical exercise. Type: Integer Range: 1-7 days/week Relevance: More frequent exercise may lead to greater heart rate improvements and better cardiovascular health.

    Resting Heart Rate Before: Description: The individual’s resting heart rate measured before beginning a 6-week exercise program. Type: Integer Range: 50 - 100 bpm (beats per minute) Relevance: This is a key health indicator, providing a baseline measurement for the individual’s heart rate.

    Resting Heart Rate After: Description: The individual’s resting heart rate measured after completing the 6-week exercise program. Type: Integer Range: 45 - 95 bpm (lower than the "Resting Heart Rate Before" due to the effects of exercise). Relevance: This variable is essential for understanding how exercise affects heart rate over time, and it can be used to perform a dependent t-test analysis.

    Max Heart Rate During Exercise: Description: The maximum heart rate the individual reached during exercise sessions. Type: Integer Range: 120 - 190 bpm Relevance: This metric helps in understanding cardiovascular strain during exercise and can be linked to exercise frequency or fitness levels.

    Potential Uses: Dependent T-Test Analysis: The dataset is particularly suited for a dependent (paired) t-test where you compare the resting heart rate before and after the exercise program for each individual.

    Exploratory Data Analysis (EDA):Investigate relationships between sleep, exercise frequency, and changes in heart rate. Potential analyses include correlations between sleep hours and resting heart rate improvement, or regression analyses to predict heart rate after exercise.

    Machine Learning: Use the dataset for predictive modeling, and build a beginner regression model to predict post-exercise heart rate using age, sleep, and exercise frequency as features.

    Health and Fitness Insights: This dataset can be useful for studying how different factors like sleep and age influence heart rate changes and overall cardiovascular health.

    License: Choose an appropriate open license, such as:

    CC BY 4.0 (Attribution 4.0 International).

    Inspiration for Kaggle Users: How does exercise frequency influence the reduction in resting heart rate? Is there a relationship between sleep and heart rate improvements post-exercise? Can we predict the post-exercise heart rate using other health variables? How do age and exercise frequency interact to affect heart rate?

    Acknowledgments: This is a simulated dataset for educational purposes, generated to demonstrate statistical and machine learning applications in the field of health analytics.

  14. Examples of boilerplate text from PLOS ONE papers based on targeted n-gram...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicole M. White; Thirunavukarasu Balasubramaniam; Richi Nayak; Adrian G. Barnett (2023). Examples of boilerplate text from PLOS ONE papers based on targeted n-gram searches (sentence level). [Dataset]. http://doi.org/10.1371/journal.pone.0264360.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nicole M. White; Thirunavukarasu Balasubramaniam; Richi Nayak; Adrian G. Barnett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Examples of boilerplate text from PLOS ONE papers based on targeted n-gram searches (sentence level).

  15. example 1 - time series - USD RUB 1 year data

    • kaggle.com
    zip
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Denis Andrikov (2024). example 1 - time series - USD RUB 1 year data [Dataset]. https://www.kaggle.com/datasets/denisandrikov/example-1-time-series-usd-rub-1-year-data
    Explore at:
    zip(675 bytes)Available download formats
    Dataset updated
    Sep 19, 2024
    Authors
    Denis Andrikov
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A simple table time series for school probability and statistics. We have to learn how to investigate data: value via time. What we try to do: - mean: average is the sum of all values divided by the number of values. It is also sometimes referred to as mean. - median is the middle number, when in order. Mode is the most common number. Range is the largest number minus the smallest number. - standard deviation s a measure of how dispersed the data is in relation to the mean.

  16. Market Basket Analysis

    • kaggle.com
    zip
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    zip(23875170 bytes)Available download formats
    Dataset updated
    Dec 9, 2021
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  17. Data for Example II.

    • plos.figshare.com
    application/csv
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jularat Chumnaul; Mohammad Sepehrifar (2024). Data for Example II. [Dataset]. http://doi.org/10.1371/journal.pone.0297930.s003
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jul 3, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jularat Chumnaul; Mohammad Sepehrifar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data analysis can be accurate and reliable only if the underlying assumptions of the used statistical method are validated. Any violations of these assumptions can change the outcomes and conclusions of the analysis. In this study, we developed Smart Data Analysis V2 (SDA-V2), an interactive and user-friendly web application, to assist users with limited statistical knowledge in data analysis, and it can be freely accessed at https://jularatchumnaul.shinyapps.io/SDA-V2/. SDA-V2 automatically explores and visualizes data, examines the underlying assumptions associated with the parametric test, and selects an appropriate statistical method for the given data. Furthermore, SDA-V2 can assess the quality of research instruments and determine the minimum sample size required for a meaningful study. However, while SDA-V2 is a valuable tool for simplifying statistical analysis, it does not replace the need for a fundamental understanding of statistical principles. Researchers are encouraged to combine their expertise with the software’s capabilities to achieve the most accurate and credible results.

  18. Z

    [Dataset] Advanced Single Cell Analysis tutorial - Complete downstream...

    • data.niaid.nih.gov
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soraggi, Samuele; Andersen, Stig Uggerhøj; Fechete, Lavinia Ioana; Tedeschi, Francesca; Frank, Manuel (2024). [Dataset] Advanced Single Cell Analysis tutorial - Complete downstream analysis across conditions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10782589
    Explore at:
    Dataset updated
    Mar 7, 2024
    Dataset provided by
    Aarhus University
    BiRC (Bioinformatics Research Center, Aarhus University)
    Authors
    Soraggi, Samuele; Andersen, Stig Uggerhøj; Fechete, Lavinia Ioana; Tedeschi, Francesca; Frank, Manuel
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Datasets and metadata used for the full streamline analysis of plant data under different conditions of infection. The tutorial is an example of analysis which can be useful in multiple scenario where comparisons are needed (healthy and sick patients, for example). You can find the tutorial at our website https://hds-sandbox.github.io/AdvancedSingleCell

    Usage notes:

    all files are ready to use, except for control1.tar.gz which is a folder that needs to be decompressed

  19. Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jan 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 11, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Data Analytics Market Size 2025-2029

    The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.

    The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.

    What will be the Size of the Data Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data. Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data. Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.

    How is this Data Analytics Industry segmented?

    The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Component Insights

    The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offerings, are driving innovatio

  20. E

    Data Analytics Market Growth Analysis - Forecast Trends and Outlook...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), Data Analytics Market Growth Analysis - Forecast Trends and Outlook (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/data-analytics-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    Global
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The global data analytics market size USD 54.37 Billion in 2024. The industry is expected to grow at a CAGR of 20.60% during the forecast period of 2025-2034 to reach a value of USD 353.86 Billion by 2034. The rising adoption of artificial intelligence (AI) and machine learning (ML) is transforming the market, enabling organizations to extract actionable insights from vast, complex datasets and drive real-time, informed decision-making.

    Enterprises across sectors are increasingly leveraging these technologies to optimize operations, reduce costs, and maintain a competitive edge. For instance, the U.S. Department of Defense (DoD) released its 2023 Data, Analytics, and AI Adoption Strategy, emphasizing AI and ML integration to enhance operational capabilities and advance defense technologies.

    Concurrently, the growing volume and complexity of data generated from IoT devices, social media platforms, and enterprise systems is fueling demand for sophisticated analytics tools within the global data analytics market. A clear example is Telenor IoT’s launch of its Analytics and Insights service on November 2024, which provides businesses with actionable intelligence on their IoT deployments to optimize operations, mitigate risks, and make informed strategic decisions. The platform enables deployment insights, usage analytics, and performance optimization, reflecting how advanced analytics solutions are becoming central to operational efficiency.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jamie Monogan (2020). Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems [Dataset]. http://doi.org/10.7910/DVN/ARKOTI

Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 28, 2020
Dataset provided by
Harvard Dataverse
Authors
Jamie Monogan
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.

Search
Clear search
Close search
Google apps
Main menu