Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technical notes and documentation on the common data model of the project CONCEPT-DM2.
This publication corresponds to the Common Data Model (CDM) specification of the CONCEPT-DM2 project for the implementation of a federated network analysis of the healthcare pathway of type 2 diabetes.
Aims of the CONCEPT-DM2 project:
General aim: To analyse chronic care effectiveness and efficiency of care pathways in diabetes, assuming the relevance of care pathways as independent factors of health outcomes using data from real life world (RWD) from five Spanish Regional Health Systems.
Main specific aims:
Study Design: It is a population-based retrospective observational study centered on all T2D patients diagnosed in five Regional Health Services within the Spanish National Health Service. We will include all the contacts of these patients with the health services using the electronic medical record systems including Primary Care data, Specialized Care data, Hospitalizations, Urgent Care data, Pharmacy Claims, and also other registers such as the mortality and the population register.
Cohort definition: All patients with code of Type 2 Diabetes in the clinical health records
Files included in this publication:
The modeled data in these archives are in the NetCDF format (https://www.unidata.ucar.edu/software/netcdf/). NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. It is also a community standard for sharing scientific data. The Unidata Program Center supports and maintains netCDF programming interfaces for C, C++, Java, and Fortran. Programming interfaces are also available for Python, IDL, MATLAB, R, Ruby, and Perl. Data in netCDF format is: • Self-Describing. A netCDF file includes information about the data it contains. • Portable. A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers. • Scalable. Small subsets of large datasets in various formats may be accessed efficiently through netCDF interfaces, even from remote servers. • Appendable. Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure. • Sharable. One writer and multiple readers may simultaneously access the same netCDF file. • Archivable. Access to all earlier forms of netCDF data will be supported by current and future versions of the software. Pub_figures.tar.zip Contains the NCL scripts for figures 1-5 and Chesapeake Bay Airshed shapefile. The directory structure of the archive is ./Pub_figures/Fig#_data. Where # is the figure number from 1-5. EMISS.data.tar.zip This archive contains two NetCDF files that contain the emission totals for 2011ec and 2040ei emission inventories. The name of the files contain the year of the inventory and the file header contains a description of each variable and the variable units. EPIC.data.tar.zip contains the monthly mean EPIC data in NetCDF format for ammonium fertilizer application (files with ANH3 in the name) and soil ammonium concentration (files with NH3 in the name) for historical (Hist directory) and future (RCP-4.5 directory) simulations. WRF.data.tar.zip contains mean monthly and seasonal data from the 36km downscaled WRF simulations in the NetCDF format for the historical (Hist directory) and future (RCP-4.5 directory) simulations. CMAQ.data.tar.zip contains the mean monthly and seasonal data in NetCDF format from the 36km CMAQ simulations for the historical (Hist directory), future (RCP-4.5 directory) and future with historical emissions (RCP-4.5-hist-emiss directory). This dataset is associated with the following publication: Campbell, P., J. Bash, C. Nolte, T. Spero, E. Cooter, K. Hinson, and L. Linker. Projections of Atmospheric Nitrogen Deposition to the Chesapeake Bay Watershed. Journal of Geophysical Research - Biogeosciences. American Geophysical Union, Washington, DC, USA, 12(11): 3307-3326, (2019).
This dataset archives the daily SNACS Polar MM5 atmospheric model data for simulations run with the following forcing data: Model years Data 1957-1958 to 1978-1979 ERA40 1979-1980 to 2000-2001 ERA40 + SSMR/SSMI sea ice from National Snow and Ice Data Center (NSIDC) 2001-2002 to 2006-2007 TOGA + SSMR/SSMI sea ice from National Snow and Ice Data Center (NSIDC) V2 + NNRP for soil moisture There are time series data from 28 model grid points near Barrow, AK.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 initial release (ERA5t) model level analysis parameter data. ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset accompanying the Synthetic Daisies post "Are the Worst Performers the Best Predictors?" and the technical paper (on viXra) "From Worst to Most Variable? Only the worst performers may be the most informative".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission includes raster datasets for each layer of evidence used for weights of evidence analysis as well as the deterministic play fairway analysis (PFA). Data representative of heat, permeability and groundwater comprises some of the raster datasets. Additionally, the final deterministic PFA model is provided along with a certainty model. All of these datasets are best used with an ArcGIS software package, specifically Spatial Data Modeler.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The meta-learning method proposed in this paper addresses the issue of small-sample regression in the application of engineering data analysis, which is a highly promising direction for research. By integrating traditional regression models with optimization-based data augmentation from meta-learning, the proposed deep neural network demonstrates excellent performance in optimizing glass fiber reinforced plastic (GFRP) for wrapping concrete short columns. When compared with traditional regression models, such as Support Vector Regression (SVR), Gaussian Process Regression (GPR), and Radial Basis Function Neural Networks (RBFNN), the meta-learning method proposed here performs better in modeling small data samples. The success of this approach illustrates the potential of deep learning in dealing with limited amounts of data, offering new opportunities in the field of material data analysis.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This lesson was adapted from educational material written by Dr. Kateri Salk for her Fall 2019 Hydrologic Data Analysis course at Duke University. This is the first part of a two-part exercise focusing on time series analysis.
Introduction
Time series are a special class of dataset, where a response variable is tracked over time. The frequency of measurement and the timespan of the dataset can vary widely. At its most simple, a time series model includes an explanatory time component and a response variable. Mixed models can include additional explanatory variables (check out the nlme
and lme4
R packages). We will be covering a few simple applications of time series analysis in these lessons.
Opportunities
Analysis of time series presents several opportunities. In aquatic sciences, some of the most common questions we can answer with time series modeling are:
Can we forecast conditions in the future?
Challenges
Time series datasets come with several caveats, which need to be addressed in order to effectively model the system. A few common challenges that arise (and can occur together within a single dataset) are:
Autocorrelation: Data points are not independent from one another (i.e., the measurement at a given time point is dependent on previous time point(s)).
Data gaps: Data are not collected at regular intervals, necessitating interpolation between measurements. There are often gaps between monitoring periods. For many time series analyses, we need equally spaced points.
Seasonality: Cyclic patterns in variables occur at regular intervals, impeding clear interpretation of a monotonic (unidirectional) trend. Ex. We can assume that summer temperatures are higher.
Heteroscedasticity: The variance of the time series is not constant over time.
Covariance: the covariance of the time series is not constant over time. Many of these models assume that the variance and covariance are similar over the time-->heteroschedasticity.
Learning Objectives
After successfully completing this notebook, you will be able to:
Choose appropriate time series analyses for trend detection and forecasting
Discuss the influence of seasonality on time series analysis
Interpret and communicate results of time series analyses
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.
This dataset archives the 3-hourly SNACS Polar MM5 atmospheric model data for simulations run with the following forcing data. Model years Data 1957-1958 to 1978-1979 ERA40 1979-1980 to 2000-2001 ERA40 + SSMR/SSMI sea ice from National Snow and Ice Data Center (NSIDC) 2001-2002 to 2006-2007 TOGA + SSMR/SSMI sea ice from National Snow and Ice Data Center (NSIDC) V2 + NNRP for soil moisture There are time series data from 28 model grid points near Barrow, AK.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Statistical Analysis Software Market size was valued at USD 7,963.44 Million in 2023 and is projected to reach USD 13,023.63 Million by 2030, growing at a CAGR of 7.28% during the forecast period 2024-2030.
Global Statistical Analysis Software Market Drivers
The market drivers for the Statistical Analysis Software Market can be influenced by various factors. These may include:
Growing Data Complexity and Volume: The demand for sophisticated statistical analysis tools has been fueled by the exponential rise in data volume and complexity across a range of industries. Robust software solutions are necessary for organizations to evaluate and extract significant insights from huge datasets.
Growing Adoption of Data-Driven Decision-Making: Businesses are adopting a data-driven approach to decision-making at a faster rate. Utilizing statistical analysis tools, companies can extract meaningful insights from data to improve operational effectiveness and strategic planning.
Developments in Analytics and Machine Learning: As these fields continue to progress, statistical analysis software is now capable of more. These tools’ increasing popularity can be attributed to features like sophisticated modeling and predictive analytics.
A greater emphasis is being placed on business intelligence: Analytics and business intelligence are now essential components of corporate strategy. In order to provide business intelligence tools for studying trends, patterns, and performance measures, statistical analysis software is essential.
Increasing Need in Life Sciences and Healthcare: Large volumes of data are produced by the life sciences and healthcare sectors, necessitating complex statistical analysis. The need for data-driven insights in clinical trials, medical research, and healthcare administration is driving the market for statistical analysis software.
Growth of Retail and E-Commerce: The retail and e-commerce industries use statistical analytic tools for inventory optimization, demand forecasting, and customer behavior analysis. The need for analytics tools is fueled in part by the expansion of online retail and data-driven marketing techniques.
Government Regulations and Initiatives: Statistical analysis is frequently required for regulatory reporting and compliance with government initiatives, particularly in the healthcare and finance sectors. In these regulated industries, statistical analysis software uptake is driven by this.
Big Data Analytics’s Emergence: As big data analytics has grown in popularity, there has been a demand for advanced tools that can handle and analyze enormous datasets effectively. Software for statistical analysis is essential for deriving valuable conclusions from large amounts of data.
Demand for Real-Time Analytics: In order to make deft judgments fast, there is a growing need for real-time analytics. Many different businesses have a significant demand for statistical analysis software that provides real-time data processing and analysis capabilities.
Growing Awareness and Education: As more people become aware of the advantages of using statistical analysis in decision-making, its use has expanded across a range of academic and research institutions. The market for statistical analysis software is influenced by the academic sector.
Trends in Remote Work: As more people around the world work from home, they are depending more on digital tools and analytics to collaborate and make decisions. Software for statistical analysis makes it possible for distant teams to efficiently examine data and exchange findings.
https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
NoSQL Database Market was valued at $9.38 Billion in 2023, and is projected to reach $USD 86.48 Billion by 2032, at a CAGR of 28% from 2023 to 2032.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Collection and especially analysis of open-ended survey responses are relatively rare in the discipline and when conducted are almost exclusively done through human coding. We present an alternative, semiautomated approach, the structura ltopic model (STM) (Roberts, Stewart, and Airoldi 2013; Roberts et al. 2013), that draws on recent developments in machine learning based analysis of textual data. A crucial contribution of the method is that it incorporates information about the document, such as the author'™s gender, political affiliation, and treatment assignment (if an experimental study). This article focuses on how the STM is helpful for survey researchers and experimentalists. The STM makes analyzing open-ended responses easier, more revealing, and capable of being used to estimate treatment effects. We illustrate these innovations with analysis of text from surveys and experiments.
Various geospatial data sets have been packaged in an ArcGIS Pro .aprx. The user will need the ArcGIS Pro software to access and view the data. For more information on ArcGIS Pro go to https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. Note that Metadata for various geospatial data files can be accessed by selecting View Metadata within ArcGISPro.
Data Science Platform Market Size 2025-2029
The data science platform market size is forecast to increase by USD 763.9 million at a CAGR of 40.2% between 2024 and 2029.
The market is experiencing significant growth, driven by the integration of artificial intelligence (AI) and machine learning (ML). This enhancement enables more advanced data analysis and prediction capabilities, making data science platforms an essential tool for businesses seeking to gain insights from their data. Another trend shaping the market is the emergence of containerization and microservices in platforms. This development offers increased flexibility and scalability, allowing organizations to efficiently manage their projects.
However, the use of platforms also presents challenges, particularly In the area of data privacy and security. Ensuring the protection of sensitive data is crucial for businesses, and platforms must provide strong security measures to mitigate risks. In summary, the market is witnessing substantial growth due to the integration of AI and ML technologies, containerization, and microservices, while data privacy and security remain key challenges.
What will be the Size of the Data Science Platform Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for advanced data analysis capabilities in various industries. Cloud-based solutions are gaining popularity as they offer scalability, flexibility, and cost savings. The market encompasses the entire project life cycle, from data acquisition and preparation to model development, training, and distribution. Big data, IoT, multimedia, machine data, consumer data, and business data are prime sources fueling this market's expansion. Unstructured data, previously challenging to process, is now being effectively managed through tools and software. Relational databases and machine learning models are integral components of platforms, enabling data exploration, preprocessing, and visualization.
Moreover, Artificial intelligence (AI) and machine learning (ML) technologies are essential for handling complex workflows, including data cleaning, model development, and model distribution. Data scientists benefit from these platforms by streamlining their tasks, improving productivity, and ensuring accurate and efficient model training. The market is expected to continue its growth trajectory as businesses increasingly recognize the value of data-driven insights.
How is this Data Science Platform Industry segmented and which is the largest segment?
The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
India
Japan
South America
Brazil
Middle East and Africa
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
On-premises deployment is a traditional method for implementing technology solutions within an organization. This approach involves purchasing software with a one-time license fee and a service contract. On-premises solutions offer enhanced security, as they keep user credentials and data within the company's premises. They can be customized to meet specific business requirements, allowing for quick adaptation. On-premises deployment eliminates the need for third-party providers to manage and secure data, ensuring data privacy and confidentiality. Additionally, it enables rapid and easy data access, and keeps IP addresses and data confidential. This deployment model is particularly beneficial for businesses dealing with sensitive data, such as those in manufacturing and large enterprises. While cloud-based solutions offer flexibility and cost savings, on-premises deployment remains a popular choice for organizations prioritizing data security and control.
Get a glance at the Data Science Platform Industry report of share of various segments. Request Free Sample
The on-premises segment was valued at USD 38.70 million in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 48% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request F
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Social networks are tied to population dynamics; interactions are driven by population density and demographic structure, while social relationships can be key determinants of survival and reproductive success. However, difficulties integrating models used in demography and network analysis have limited research at this interface. We introduce the R package genNetDem for simulating integrated network-demographic datasets. It can be used to create longitudinal social networks and/or capture-recapture datasets with known properties. It incorporates the ability to generate populations and their social networks, generate grouping events using these networks, simulate social network effects on individual survival, and flexibly sample these longitudinal datasets of social associations. By generating co-capture data with known statistical relationships it provides functionality for methodological research. We demonstrate its use with case studies testing how imputation and sampling design influence the success of adding network traits to conventional Cormack-Jolly-Seber (CJS) models. We show that incorporating social network effects in CJS models generates qualitatively accurate results, but with downward-biased parameter estimates when network position influences survival. Biases are greater when fewer interactions are sampled or fewer individuals are observed in each interaction. While our results indicate the potential of incorporating social effects within demographic models, they show that imputing missing network measures alone is insufficient to accurately estimate social effects on survival, pointing to the importance of incorporating network imputation approaches. genNetDem provides a flexible tool to aid these methodological advancements and help researchers test other sampling considerations in social network studies. Methods The dataset and code stored here is for Case Studies 1 and 2 in the paper. Datsets were generated using simulations in R. Here we provide 1) the R code used for the simulations; 2) the simulation outputs (as .RDS files); and 3) the R code to analyse simulation outputs and generate the tables and figures in the paper.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
First-order dynamic occupancy models (FODOMs) are a class of state-space model in which the true state (occurrence) is observed imperfectly. An important assumption of FODOMs is that site dynamics only depend on the current state and that variations in dynamic processes are adequately captured with covariates or random effects. However, it is often difficult to understand and/or measure the covariates that generate ecological data, which are typically spatio-temporally correlated. Consequently, the non-independent error structure of correlated data causes underestimation of parameter uncertainty and poor ecological inference. Here, we extend the FODOM framework with a second-order Markov process to accommodate site memory when covariates are not available. Our modeling framework can be used to make reliable inference about site occupancy, colonization, extinction, turnover, and detection probabilities. We present a series of simulations to illustrate the data requirements and model performance. We then applied our modeling framework to 13 years of data from an amphibian community in southern Arizona, USA. In this analysis, we found residual temporal autocorrelation of population processes for most species, even after accounting for long-term drought dynamics. Our approach represents a valuable advance in obtaining inference on population dynamics, especially as they relate to metapopulations.
Methods
This repository provides the code, data, and simulations to recreate all of the analysis, tables, and figures presented in the manuscript.
In this file, we direct the user to the location of files.
All methods can be found in the manuscript and associated supplements.
All file paths direct the user in navigating the files in this repo.
# 1. To navigate to files explaining how to simulate and analyze data using the main text parameterization
# 2. To navigate to files explaining how to simulate and analyze data using the alternative parameterization (hidden Markov model)
# 3. To navigate to files that created the parameter combinations for the simulation studies
# 4. To navigate to files used to run scenarios in the manuscript
# 4a. Scenario 1: data generated without site memory & without site heterogenity
# 4b. Scenario 2: data generated with site memory & without site heterogenity
# 4c. Scenario 3: data generated with site memory & with site heterogenity
# 5. To navigate to files for general sample design guidelines
# 6. Parameter accuracy, precision, and bias under different parameter combinations
# 7. Model comparison under different scenarios
# 8. To specifically navigate to code that recreates manuscript:
# 8a. Figures
# 8b. Tables
# 9. To navigate to files for empirical analysis
To see model parameterization as written in the main text, please navigate to: /MemModel/OtherCode/MemoryMod_main.R
To see alternative parameterization using a Hidden Markov Model, please navigate to: /MemModel/OtherCode/MemoryMod_HMM.R
To see how parameter combinations were generated, please navigate to: /MemModel/ParameterCombinations/LHS_parameter_combos.R
To see stored parameter combinations for simulations, please navigate to: /MemModel/ParameterCombinations/parameter_combos_MemModel4.csv
To simulate data WITHOUT memory and analyze using: - memory model & - first-order dynamic occupancy model
Please navigate to: /MemModel/Simulations/withoutMem/Code/ MemoryMod_JobArray_withoutMem.R = code to simulate & analyze data MemoryMod_JA1.sh = file to run simulations 1-5000 on HPC MemoryMod_JA2.sh = file to run simulations 5001-10000 on HPC
All model output is stored in: /MemModel/Simulations/withoutMem/ModelOutput
To simulate data WITH memory and analyze using: - memory model & - first-order dynamic occupancy model
Please navigate to: /MemModel/Simulations/withMem/Code/ MemoryMod_JobArray_withMem.R = code to simulate & analyze data MemoryMod_JA1.sh = file to run simulations 1-5000 on HPC MemoryMod_JA2.sh = file to run simulations 5001-10000 on HPC
All model output is stored in: /MemModel/Simulations/withMem/ModelOutput
To simulate data WITH memory and WITH site heterogenity- analyze using: - memory model & - first-order dynamic occupancy model
Please navigate to: /MemModel/Simulations/Hetero/Code/ MemoryMod_JobArray_Hetero.R = code to simulate & analyze data MemoryMod_JA1.sh = file to run simulations 1-5000 on HPC MemoryMod_JA2.sh = file to run simulations 5001-10000 on HPC
All model output is stored in: /MemModel/Simulations/Hetero/ModelOutput
To see methods for the general sample design guidelines, please navigate to: /MemModel/PostProcessingCode/Sampling_design_guidelines.R
To see methods for model performance under different parameter combinations, please navigate to: /MemModel/PostProcessingCode/Parameter_precison_accuracy_bias.R
To see methods for model comparison, please navigate to: /MemModel/PostProcessingCode/ModelComparison.R
To create parts of Figure 1 of main text (case study): - Fig 1D & 1E: /MemModel/EmpiricalAnalysis/Code/Analysis/AZ_CaseStudy.R
To create Figure 2 of main text (Comparison across simulation scenarios): - /MemModel/PostProcessingCode/ModelComparison.R
To create Figure S1, S2, & S3 use file: - /MemModel/PostProcessingCode/Parameter_precison_accuracy_bias.R
To create Figure S4 & S5 use file: - /MemModel/PostProcessingCode/ModelComparison.R
To create Table 1 of main text (General sampling recommendations): - /MemModel/PostProcessingCode/Sampling_design_guidelines.R
To create Table S1: - /MemModel/PostProcessingCode/Parameter_precison_accuracy_bias.R
To create Table S2: - /MemModel/EmpiricalAnalysis/Code/Analysis/AZ_CaseStudy.R
To create Table S3: - /MemModel/PostProcessingCode/ModelComparison.R
To create Table S4 & S5: - /MemModel/EmpiricalAnalysis/Code/Analysis/AZ_CaseStudy.R
To recreate the empirical analysis of the case study, please navigate to: - /MemModel/EmpiricalAnalysis/Code/Analysis/AZ_CaseStudy.R
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data included in this submission support the analysis conducted for the report "Nontechnical Barriers to Geothermal Development" which is linked bellow. These data include information about the power purchase agreements (PPAs) analyzed for the report, inputs and model results for the pro forma economic analysis, and outputs from the regression analysis conducted on PPAs comparing geothermal and other power generation technologies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table illustrating the five different categories the application distinguishes and their calculated statistics and charts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technical notes and documentation on the common data model of the project CONCEPT-DM2.
This publication corresponds to the Common Data Model (CDM) specification of the CONCEPT-DM2 project for the implementation of a federated network analysis of the healthcare pathway of type 2 diabetes.
Aims of the CONCEPT-DM2 project:
General aim: To analyse chronic care effectiveness and efficiency of care pathways in diabetes, assuming the relevance of care pathways as independent factors of health outcomes using data from real life world (RWD) from five Spanish Regional Health Systems.
Main specific aims:
Study Design: It is a population-based retrospective observational study centered on all T2D patients diagnosed in five Regional Health Services within the Spanish National Health Service. We will include all the contacts of these patients with the health services using the electronic medical record systems including Primary Care data, Specialized Care data, Hospitalizations, Urgent Care data, Pharmacy Claims, and also other registers such as the mortality and the population register.
Cohort definition: All patients with code of Type 2 Diabetes in the clinical health records
Files included in this publication: