https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Next-Generation Sequencing (NGS) Informatics market has rapidly evolved over the past decade, becoming an integral component in genomics research, personalized medicine, and various biomedical applications. This market encompasses software and analytics tools that handle the vast data generated from NGS technolo
This graph presents the results of a survey, conducted by BARC in 2014/15, into the current and planned use of technology for the analysis of big data. At the beginning of 2015, ** percent of respondents indicated that their company was already using a big data analytical appliance for big data.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The market for statistical analysis software is segmented by various factors, including:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Tabletop Role-Playing Game (TTRPG) market has evolved dramatically over the past few decades, emerging as a vibrant community of storytellers and strategists engaging in immersive gameplay experiences. Initially characterized by traditional pen-and-paper formats, the industry has diversified to include a plethor
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the experiemental fostering care publication comprising of datasets.
Source agency: Office for Standards in Education, Children's Services and Skills
Designation: Experimental Official Statistics
Language: English
Alternative title: Experimental statistics: fostering care datasets
https://www.verifiedindustryinsights.com/privacy-policyhttps://www.verifiedindustryinsights.com/privacy-policy
The market size of the Statistics Software Market is categorized based on Deployment Type (On-Premise, Cloud-Based) and Application (Data Analysis, Data Visualization, Predictive Analytics, Statistical Analysis, Reporting) and End-User Industry (Healthcare, Finance, Retail, Education, Government) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
https://data.gov.tw/licensehttps://data.gov.tw/license
This dataset provides statistics on the number of food poisoning cases in eating places after the year 1981. It is available for use by the general public, industry, academic institutions, and others.
Chemical concentration, exposure, and health risk data for U.S. census tracts from National Scale Air Toxics Assessment (NATA). This dataset is associated with the following publication: Huang, H., R. Tornero-Velez, and T. Barzyk. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States. Journal of Exposure Science and Environmental Epidemiology. Nature Publishing Group, London, UK, 27(6): 544-550, (2017).
The National Energy Efficiency Data-Framework (NEED) was set up to provide a better understanding of energy use and energy efficiency in domestic and non-domestic buildings in Great Britain. The data framework matches data about a property together - including energy consumption and energy efficiency measures installed - at household level.
We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The revisions are summarised here:
Error 2: Some properties incorrectly excluded from the Scotland multiple attributes tables
We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The impact of energy efficiency measures analysis remains unchanged. The revisions are summarised here:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the last decade, a plethora of algorithms have been developed for spatial ecology studies. In our case, we use some of these codes for underwater research work in applied ecology analysis of threatened endemic fishes and their natural habitat. For this, we developed codes in Rstudio® script environment to run spatial and statistical analyses for ecological response and spatial distribution models (e.g., Hijmans & Elith, 2017; Den Burg et al., 2020). The employed R packages are as follows: caret (Kuhn et al., 2020), corrplot (Wei & Simko, 2017), devtools (Wickham, 2015), dismo (Hijmans & Elith, 2017), gbm (Freund & Schapire, 1997; Friedman, 2002), ggplot2 (Wickham et al., 2019), lattice (Sarkar, 2008), lattice (Musa & Mansor, 2021), maptools (Hijmans & Elith, 2017), modelmetrics (Hvitfeldt & Silge, 2021), pander (Wickham, 2015), plyr (Wickham & Wickham, 2015), pROC (Robin et al., 2011), raster (Hijmans & Elith, 2017), RColorBrewer (Neuwirth, 2014), Rcpp (Eddelbeuttel & Balamura, 2018), rgdal (Verzani, 2011), sdm (Naimi & Araujo, 2016), sf (e.g., Zainuddin, 2023), sp (Pebesma, 2020) and usethis (Gladstone, 2022).
It is important to follow all the codes in order to obtain results from the ecological response and spatial distribution models. In particular, for the ecological scenario, we selected the Generalized Linear Model (GLM) and for the geographic scenario we selected DOMAIN, also known as Gower's metric (Carpenter et al., 1993). We selected this regression method and this distance similarity metric because of its adequacy and robustness for studies with endemic or threatened species (e.g., Naoki et al., 2006). Next, we explain the statistical parameterization for the codes immersed in the GLM and DOMAIN running:
In the first instance, we generated the background points and extracted the values of the variables (Code2_Extract_values_DWp_SC.R). Barbet-Massin et al. (2012) recommend the use of 10,000 background points when using regression methods (e.g., Generalized Linear Model) or distance-based models (e.g., DOMAIN). However, we considered important some factors such as the extent of the area and the type of study species for the correct selection of the number of points (Pers. Obs.). Then, we extracted the values of predictor variables (e.g., bioclimatic, topographic, demographic, habitat) in function of presence and background points (e.g., Hijmans and Elith, 2017).
Subsequently, we subdivide both the presence and background point groups into 75% training data and 25% test data, each group, following the method of Soberón & Nakamura (2009) and Hijmans & Elith (2017). For a training control, the 10-fold (cross-validation) method is selected, where the response variable presence is assigned as a factor. In case that some other variable would be important for the study species, it should also be assigned as a factor (Kim, 2009).
After that, we ran the code for the GBM method (Gradient Boost Machine; Code3_GBM_Relative_contribution.R and Code4_Relative_contribution.R), where we obtained the relative contribution of the variables used in the model. We parameterized the code with a Gaussian distribution and cross iteration of 5,000 repetitions (e.g., Friedman, 2002; kim, 2009; Hijmans and Elith, 2017). In addition, we considered selecting a validation interval of 4 random training points (Personal test). The obtained plots were the partial dependence blocks, in function of each predictor variable.
Subsequently, the correlation of the variables is run by Pearson's method (Code5_Pearson_Correlation.R) to evaluate multicollinearity between variables (Guisan & Hofer, 2003). It is recommended to consider a bivariate correlation ± 0.70 to discard highly correlated variables (e.g., Awan et al., 2021).
Once the above codes were run, we uploaded the same subgroups (i.e., presence and background groups with 75% training and 25% testing) (Code6_Presence&backgrounds.R) for the GLM method code (Code7_GLM_model.R). Here, we first ran the GLM models per variable to obtain the p-significance value of each variable (alpha ≤ 0.05); we selected the value one (i.e., presence) as the likelihood factor. The generated models are of polynomial degree to obtain linear and quadratic response (e.g., Fielding and Bell, 1997; Allouche et al., 2006). From these results, we ran ecological response curve models, where the resulting plots included the probability of occurrence and values for continuous variables or categories for discrete variables. The points of the presence and background training group are also included.
On the other hand, a global GLM was also run, from which the generalized model is evaluated by means of a 2 x 2 contingency matrix, including both observed and predicted records. A representation of this is shown in Table 1 (adapted from Allouche et al., 2006). In this process we select an arbitrary boundary of 0.5 to obtain better modeling performance and avoid high percentage of bias in type I (omission) or II (commission) errors (e.g., Carpenter et al., 1993; Fielding and Bell, 1997; Allouche et al., 2006; Kim, 2009; Hijmans and Elith, 2017).
Table 1. Example of 2 x 2 contingency matrix for calculating performance metrics for GLM models. A represents true presence records (true positives), B represents false presence records (false positives - error of commission), C represents true background points (true negatives) and D represents false backgrounds (false negatives - errors of omission).
Validation set
Model
True
False
Presence
A
B
Background
C
D
We then calculated the Overall and True Skill Statistics (TSS) metrics. The first is used to assess the proportion of correctly predicted cases, while the second metric assesses the prevalence of correctly predicted cases (Olden and Jackson, 2002). This metric also gives equal importance to the prevalence of presence prediction as to the random performance correction (Fielding and Bell, 1997; Allouche et al., 2006).
The last code (i.e., Code8_DOMAIN_SuitHab_model.R) is for species distribution modelling using the DOMAIN algorithm (Carpenter et al., 1993). Here, we loaded the variable stack and the presence and background group subdivided into 75% training and 25% test, each. We only included the presence training subset and the predictor variables stack in the calculation of the DOMAIN metric, as well as in the evaluation and validation of the model.
Regarding the model evaluation and estimation, we selected the following estimators:
1) partial ROC, which evaluates the approach between the curves of positive (i.e., correctly predicted presence) and negative (i.e., correctly predicted absence) cases. As farther apart these curves are, the model has a better prediction performance for the correct spatial distribution of the species (Manzanilla-Quiñones, 2020).
2) ROC/AUC curve for model validation, where an optimal performance threshold is estimated to have an expected confidence of 75% to 99% probability (De Long et al., 1988).
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Many statistical tools have been developed to aid in the assessment of a numerical model’s quality at reproducing observations. Some of these techniques focus on the identification of events within the data set, times when the observed value is beyond some threshold value that defines it as a value of keen interest. An example of this is whether it will rain, in which events are defined as any precipitation above some defined amount. A method called the sliding threshold of observation for numeric evaluation (STONE) curve sweeps the event definition threshold of both the model output and the observations, resulting in the identification of threshold intervals for which the model does well at sorting the observations into events and nonevents. An excellent data-model comparison will have a smooth STONE curve, but the STONE curve can have wiggles and ripples in it. These features reveal clusters when the model systematically overestimates or underestimates the observations. This study establishes the connection between features in the STONE curve and attributes of the data-model relationship. The method is applied to a space weather example.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Underwater Inspection Solutions market has witnessed significant growth over the past decade, driven by the increasing need for asset integrity management in various industries, including oil and gas, marine, civil engineering, and environmental monitoring. With the growing complexity of underwater infrastructur
https://data.gov.tw/licensehttps://data.gov.tw/license
The statistical analysis table for the adjustments of income and deductions provided by the Taipei National Taxation Bureau of the Ministry of Finance.
Officer Involved Shooting (OIS) Database and Statistical Analysis. Data is updated after there is an officer involved shooting.PIU#Incident # - the number associated with either the incident or used as reference to store the items in our evidence rooms Date of Occurrence Month - month the incident occurred (Note the year is labeled on the tab of the spreadsheet)Date of Occurrence Day - day of the month the incident occurred (Note the year is labeled on the tab of the spreadsheet)Time of Occurrence - time the incident occurredAddress of incident - the location the incident occurredDivision - the LMPD division in which the incident actually occurredBeat - the LMPD beat in which the incident actually occurredInvestigation Type - the type of investigation (shooting or death)Case Status - status of the case (open or closed)Suspect Name - the name of the suspect involved in the incidentSuspect Race - the race of the suspect involved in the incident (W-White, B-Black)Suspect Sex - the gender of the suspect involved in the incidentSuspect Age - the age of the suspect involved in the incidentSuspect Ethnicity - the ethnicity of the suspect involved in the incident (H-Hispanic, N-Not Hispanic)Suspect Weapon - the type of weapon the suspect used in the incidentOfficer Name - the name of the officer involved in the incidentOfficer Race - the race of the officer involved in the incident (W-White, B-Black, A-Asian)Officer Sex - the gender of the officer involved in the incidentOfficer Age - the age of the officer involved in the incidentOfficer Ethnicity - the ethnicity of the suspect involved in the incident (H-Hispanic, N-Not Hispanic)Officer Years of Service - the number of years the officer has been serving at the time of the incidentLethal Y/N - whether or not the incident involved a death (Y-Yes, N-No, continued-pending)Narrative - a description of what was determined from the investigationContact:Carol Boylecarol.boyle@louisvilleky.gov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains material related to the analysis performed in the article "Best Practices for Your Exploratory Factor Analysis: Factor Tutorial". The material includes the data used in the analyses in .dat format, the labels (.txt) of the variables used in the Factor software, the outputs (.txt) evaluated in the article, and videos (.mp4 with English subtitles) recorded for the purpose of explaining the article. The videos can also be accessed in the following playlist: https://youtube.com/playlist?list=PLDfyRtHbxiZ3R-T3H1cY8dusz273aUFVe. Below is a summary of the article:
"Exploratory Factor Analysis (EFA) is one of the statistical methods most widely used in Administration, however, its current practice coexists with rules of thumb and heuristics given half a century ago. The purpose of this article is to present the best practices and recent recommendations for a typical EFA in Administration through a practical solution accessible to researchers. In this sense, in addition to discussing current practices versus recommended practices, a tutorial with real data on Factor is illustrated, a software that is still little known in the Administration area, but freeware, easy to use (point and click) and powerful. The step-by-step illustrated in the article, in addition to the discussions raised and an additional example, is also available in the format of tutorial videos. Through the proposed didactic methodology (article-tutorial + video-tutorial), we encourage researchers/methodologists who have mastered a particular technique to do the same. Specifically, about EFA, we hope that the presentation of the Factor software, as a first solution, can transcend the current outdated rules of thumb and heuristics, by making best practices accessible to Administration researchers"
This paper provides a review of three different advanced machine learning algorithms for anomaly detection in continuous data streams from a ground-test firing of a subscale Solid Rocket Motor (SRM). This study compares Orca, one-class support vector machines, and the Inductive Monitoring System (IMS) for anomaly detection on the data streams. We measure the performance of the algorithm with respect to the detection horizon for situations where fault information is available. These algorithms have been also studied by the present authors (and other co-authors) as applied to liquid propulsion systems. The trade space will be explored between these algorithms for both types of propulsion systems.
Objective: The objective of this review is to identify what is known about Indigenous data analysis methods for research. Introduction: Understanding Indigenous data analyses methods for research is crucial in health research with Indigenous participants, to support culturally appropriate interpretation of research data, and culturally inclusive analyses in cross-cultural research teams. Inclusion Criteria: This review will consider primary research studies that report on Indigenous data analysis methods for research. Method: Medline (via Ovid SP), PsycINFO (via Ovid SP), Web of Science (Clarivate Analytics), Scopus (Elsevier), Cumulated Index to Nursing and Allied Health Literature CINAHL (EBSCOhost), ProQuest Central, ProQuest Social Sciences Premium (Clarivate) will be searched. ProQuest (Theses and Dissertations) will be searched for unpublished material. Studies published from inception onwards and written in English will be assessed for inclusion. Studies meeting the inclusion criteria will be assessed for methodological quality and data will be extracted.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the rapid development of data acquisition and storage space, massive datasets exhibited with large sample size emerge increasingly and make more advanced statistical tools urgently need. To accommodate such big volume in the analysis, a variety of methods have been proposed in the circumstances of complete or right censored survival data. However, existing development of big data methodology has not attended to interval-censored outcomes, which are ubiquitous in cross-sectional or periodical follow-up studies. In this work, we propose an easily implemented divide-and-combine approach for analyzing massive interval-censored survival data under the additive hazards model. We establish the asymptotic properties of the proposed estimator, including the consistency and asymptotic normality. In addition, the divide-and-combine estimator is shown to be asymptotically equivalent to the full-data-based estimator obtained from analyzing all data together. Simulation studies suggest that, relative to the full-data-based approach, the proposed divide-and-combine approach has desirable advantage in terms of computation time, making it more applicable to large-scale data analysis. An application to a set of interval-censored data also demonstrates the practical utility of the proposed method.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Next-Generation Sequencing (NGS) Informatics market has rapidly evolved over the past decade, becoming an integral component in genomics research, personalized medicine, and various biomedical applications. This market encompasses software and analytics tools that handle the vast data generated from NGS technolo