Facebook
TwitterThis dataset was created by Abdul Hamith
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
Facebook
TwitterThe OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis can be accurate and reliable only if the underlying assumptions of the used statistical method are validated. Any violations of these assumptions can change the outcomes and conclusions of the analysis. In this study, we developed Smart Data Analysis V2 (SDA-V2), an interactive and user-friendly web application, to assist users with limited statistical knowledge in data analysis, and it can be freely accessed at https://jularatchumnaul.shinyapps.io/SDA-V2/. SDA-V2 automatically explores and visualizes data, examines the underlying assumptions associated with the parametric test, and selects an appropriate statistical method for the given data. Furthermore, SDA-V2 can assess the quality of research instruments and determine the minimum sample size required for a meaningful study. However, while SDA-V2 is a valuable tool for simplifying statistical analysis, it does not replace the need for a fundamental understanding of statistical principles. Researchers are encouraged to combine their expertise with the software’s capabilities to achieve the most accurate and credible results.
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Purpose: The analysis of Ecological Momentary Assessment (EMA) data can be difficult to conceptualize due to the complexity of how the data are collected. The goal of this tutorial is to provide an overview of statistical considerations for analyzing observational data arising from EMA studies.Method: EMA data are collected in a variety of ways, complicating the statistical analysis. We focus on fundamental statistical characteristics of the data and general purpose statistical approaches to analyzing EMA data. We implement those statistical approaches using a recent study involving EMA.Results: The linear or generalized linear mixed-model statistical approach can adequately capture the challenges resulting from EMA collected data if properly set up. Additionally, while sample size depends on both the number of participants and the number of survey responses per participant, having more participants is more important than the number of responses per participant.Conclusion: Using modern statistical methods when analyzing EMA data and adequately considering all of the statistical assumptions being used can lead to interesting and important findings when using EMA.Supplemental Material S1. Power for given effect sizes, number of participants, and number of surveys per individual for a two independent groups comparison.Supplemental Material S2. Power for given effect sizes, number of participants, and number of surveys per individual for a paired groups comparison.Oleson, J. J., Jones, M. A., Jorgensen, E. J., & Wu, Y.-H. (2021). Statistical considerations for analyzing Ecological Momentary Assessment data. Journal of Speech, Language, and Hearing Research. Advance online publication. https://doi.org/10.1044/2021_JSLHR-21-00081
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.
2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)
In all data sets, missing values are coded as "NA".
Facebook
TwitterThese data are to be used in conjunction with Data Analysis : An Introduction by B. Nolan, available at booksellers.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A simple table time series for school probability and statistics. We have to learn how to investigate data: value via time. What we try to do: - mean: average is the sum of all values divided by the number of values. It is also sometimes referred to as mean. - median is the middle number, when in order. Mode is the most common number. Range is the largest number minus the smallest number. - standard deviation s a measure of how dispersed the data is in relation to the mean.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Sports Analytics Market Size 2025-2029
The sports analytics market size is valued to increase USD 8.4 billion, at a CAGR of 28.5% from 2024 to 2029. Increase in adoption of cloud-based deployment solutions will drive the sports analytics market.
Major Market Trends & Insights
North America dominated the market and accounted for a 38% growth during the forecast period.
By Type - Football segment was valued at USD 749.30 billion in 2023
By Solution - Player analysis segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 584.13 million
Market Future Opportunities: USD 8403.30 million
CAGR : 28.5%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and ever-evolving industry, driven by advancements in core technologies and applications. Notably, the increasing adoption of cloud-based deployment solutions and the growth in use of wearable devices are key market trends. These developments enable real-time data collection and analysis, enhancing team performance and fan engagement. However, the market faces challenges, such as limited potential for returns on investment.
Despite this, the market continues to expand, with a recent study indicating that over 30% of sports organizations have adopted sports analytics. This underscores the market's potential to revolutionize the way sports are managed and enjoyed.
What will be the Size of the Sports Analytics Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Sports Analytics Market Segmented and what are the key trends of market segmentation?
The sports analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Football
Cricket
Hockey
Tennis
Others
Solution
Player analysis
Team performance analysis
Health assessment
Fan engagement analysis
Others
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Type Insights
The football segment is estimated to witness significant growth during the forecast period.
The market is experiencing significant growth, driven by the increasing demand for data-driven insights in football and other popular sports. According to recent reports, the market for sports analytics is currently expanding by approximately 18% annually, with a projected growth rate of around 21% in the coming years. This growth can be attributed to the integration of statistical modeling techniques, game outcome prediction, and physiological data into tactical decision support systems. Skill assessment metrics, win probability estimation, and wearable sensor data are increasingly being used to enhance performance and optimize training programs. Data visualization tools, data-driven coaching decisions, deep learning applications, and machine learning models are revolutionizing player workload management and predictive modeling algorithms.
Request Free Sample
The Football segment was valued at USD 749.30 billion in 2019 and showed a gradual increase during the forecast period.
Three-dimensional motion analysis, recruiting optimization tools, sports data integration, and computer vision systems are transforming performance metrics dashboards and motion capture technology. Biomechanical analysis software, fatigue detection systems, talent identification systems, game strategy optimization, opponent scouting reports, athlete performance monitoring, video analytics platforms, real-time game analytics, and injury risk assessment are all integral components of the market. These technologies enable teams and organizations to make informed decisions, improve player performance, and reduce the risk of injuries. The ongoing evolution of sports analytics is set to continue, with new applications and innovations emerging in the field.
Request Free Sample
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Sports Analytics Market Demand is Rising in North America Request Free Sample
The market in the North American region is experiencing significant growth due to technological advancements and increasing investments. In 2024, the US and Canada were major contributors to this expansion. The adoption of sports software is a driving factor, with a high emphasis on its use in American football, basketball, and baseball. Major sports leagues in the US are
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Analytics Market Size 2025-2029
The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.
The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.
What will be the Size of the Data Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data.
Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data.
Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.
How is this Data Analytics Industry segmented?
The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Component Insights
The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offerings, are driving innovatio
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of boilerplate text from PLOS ONE papers based on targeted n-gram searches (sentence level).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Our study focuses on the hardiest microorganisms inhabiting the ISS in order to assess their diversity and capabilities to resist certain stresses. We specifically selected dust samples from the Russian modules that were obtained 8-10 years ago and stored since then under sealed conditions on Earth. Targeting long-time survivors and spore-forming microorganisms we assessed consequently the cultivable microbial community of these samples in order to obtain model microbial strains that could help to analyze specific adaptation towards environmental stresses such as desiccation and lack of nutrients. In this study we analyzed these microorganisms with respect to their resistance towards thermal stress and exposure to clinically relevant antibiotics. In addition we assessed the bacterial and archaeal community via molecular methods (NGS sequencing) and compared our new data with the previously derived information from the ISS microbiome.
Facebook
TwitterThis file contains location and carbonate content analysis of samples taken during Cruise No. FERL01052 aboard the NOAA Ship Ferrel. These samples were taken on East and West Flower Garden Banks of the Flower Gardens Bank National Marine Sanctuary between May 28, 2002 and June 3, 2002. The information collected during this cruise is intended for a preliminary geologic interpretation of the surficial sediment distribution in order to determine sites for future sample collection. The interpretations presented in this Open File Report are subject to change with future data acquisition.
Facebook
TwitterThis dataset was created by Abdul Hamith