100+ datasets found
  1. E

    Exploratory Data Analysis (EDA) Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Exploratory Data Analysis (EDA) Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/exploratory-data-analysis-eda-tools-54257
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing need for businesses to derive actionable insights from their ever-expanding datasets. The market, currently estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $45 billion by 2033. This growth is fueled by several factors, including the rising adoption of big data analytics, the proliferation of cloud-based solutions offering enhanced accessibility and scalability, and the growing demand for data-driven decision-making across diverse industries like finance, healthcare, and retail. The market is segmented by application (large enterprises and SMEs) and type (graphical and non-graphical tools), with graphical tools currently holding a larger market share due to their user-friendly interfaces and ability to effectively communicate complex data patterns. Large enterprises are currently the dominant segment, but the SME segment is anticipated to experience faster growth due to increasing affordability and accessibility of EDA solutions. Geographic expansion is another key driver, with North America currently holding the largest market share due to early adoption and a strong technological ecosystem. However, regions like Asia-Pacific are exhibiting high growth potential, fueled by rapid digitalization and a burgeoning data science talent pool. Despite these opportunities, the market faces certain restraints, including the complexity of some EDA tools requiring specialized skills and the challenge of integrating EDA tools with existing business intelligence platforms. Nonetheless, the overall market outlook for EDA tools remains highly positive, driven by ongoing technological advancements and the increasing importance of data analytics across all sectors. The competition among established players like IBM Cognos Analytics and Altair RapidMiner, and emerging innovative companies like Polymer Search and KNIME, further fuels market dynamism and innovation.

  2. D

    Data Analysis Application Solution Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Analysis Application Solution Report [Dataset]. https://www.archivemarketresearch.com/reports/data-analysis-application-solution-25684
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 14, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for Data Analysis Application Solutions is projected to reach $345.8 million by 2033, exhibiting a CAGR of 12.3% during the forecast period (2023-2033). The increasing adoption of cloud-based data analysis solutions, the growing need for data-driven decision-making, and the rising adoption of big data analytics are the key factors propelling market growth. The increasing adoption of cloud-based data analysis solutions is one of the major drivers of market growth. Cloud-based solutions provide several benefits, such as reduced IT costs, increased flexibility, and accessibility. The growing need for data-driven decision-making is also contributing to market growth. Businesses are increasingly recognizing the importance of data in making informed decisions. Data analysis solutions provide businesses with the ability to analyze data and gain insights, helping them make better decisions. The rising adoption of big data analytics is another factor driving market growth. Big data analytics allows businesses to analyze large volumes of data, identifying patterns and trends that would not be possible to identify with traditional data analysis methods.

  3. Data Insight: Google Analytics Capstone Project

    • kaggle.com
    zip
    Updated Mar 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sinderpreet (2024). Data Insight: Google Analytics Capstone Project [Dataset]. https://www.kaggle.com/datasets/sinderpreet/datainsight-google-analytics-capstone-project
    Explore at:
    zip(215409585 bytes)Available download formats
    Dataset updated
    Mar 2, 2024
    Authors
    sinderpreet
    License

    https://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/

    Description

    Case study: How does a bike-share navigate speedy success?

    Scenario:

    As a data analyst on Cyclistic's marketing team, our focus is on enhancing annual memberships to drive the company's success. We aim to analyze the differing usage patterns between casual riders and annual members to craft a marketing strategy aimed at converting casual riders. Our recommendations, supported by data insights and professional visualizations, await Cyclistic executives' approval to proceed.

    About the company

    In 2016, Cyclistic launched a bike-share program in Chicago, growing to 5,824 bikes and 692 stations. Initially, their marketing aimed at broad segments with flexible pricing plans attracting both casual riders (single-ride or full-day passes) and annual members. However, recognizing that annual members are more profitable, Cyclistic is shifting focus to convert casual riders into annual members. To achieve this, they plan to analyze historical bike trip data to understand the differences and preferences between the two user groups, aiming to tailor marketing strategies that encourage casual riders to purchase annual memberships.

    Project Overview:

    This capstone project is a culmination of the skills and knowledge acquired through the Google Professional Data Analytics Certification. It focuses on Track 1, which is centered around Cyclistic, a fictional bike-share company modeled to reflect real-world data analytics scenarios in the transportation and service industry.

    Dataset Acknowledgment:

    We are grateful to Motivate Inc. for providing the dataset that serves as the foundation of this capstone project. Their contribution has enabled us to apply practical data analytics techniques to a real-world dataset, mirroring the challenges and opportunities present in the bike-sharing sector.

    Objective:

    The primary goal of this project is to analyze the Cyclistic dataset to uncover actionable insights that could help the company optimize its operations, improve customer satisfaction, and increase its market share. Through comprehensive data exploration, cleaning, analysis, and visualization, we aim to identify patterns and trends that inform strategic business decisions.

    Methodology:

    Data Collection: Utilizing the dataset provided by Motivate Inc., which includes detailed information on bike usage, customer behavior, and operational metrics. Data Cleaning and Preparation: Ensuring the dataset is accurate, complete, and ready for analysis by addressing any inconsistencies, missing values, or anomalies. Data Analysis: Applying statistical methods and data analytics techniques to extract meaningful insights from the dataset.

    Visualization and Reporting:

    Creating intuitive and compelling visualizations to present the findings clearly and effectively, facilitating data-driven decision-making. Findings and Recommendations:

    Conclusion:

    The Cyclistic Capstone Project not only demonstrates the practical application of data analytics skills in a real-world scenario but also provides valuable insights that can drive strategic improvements for Cyclistic. Through this project, showcasing the power of data analytics in transforming data into actionable knowledge, underscoring the importance of data-driven decision-making in today's competitive business landscape.

    Acknowledgments:

    Special thanks to Motivate Inc. for their support and for providing the dataset that made this project possible. Their contribution is immensely appreciated and has significantly enhanced the learning experience.

    STRATEGIES USED

    Case Study Roadmap - ASK

    ●What is the problem you are trying to solve? ●How can your insights drive business decisions?

    Key Tasks ● Identify the business task ● Consider key stakeholders

    Deliverable ● A clear statement of the business task

    Case Study Roadmap - PREPARE

    ● Where is your data located? ● Are there any problems with the data?

    Key tasks ● Download data and store it appropriately. ● Identify how it’s organized.

    Deliverable ● A description of all data sources used

    Case Study Roadmap - PROCESS

    ● What tools are you choosing and why? ● What steps have you taken to ensure that your data is clean?

    Key tasks ● Choose your tools. ● Document the cleaning process.

    Deliverable ● Documentation of any cleaning or manipulation of data

    Case Study Roadmap - ANALYZE

    ● Has your data been properly formaed? ● How will these insights help answer your business questions?

    Key tasks ● Perform calculations ● Formatting

    Deliverable ● A summary of analysis

    Case Study Roadmap - SHARE

    ● Were you able to answer all questions of stakeholders? ● Can Data visualization help you share findings?

    Key tasks ● Present your findings ● Create effective data viz.

    Deliverable ● Supporting viz and key findings

    **Case Study Roadmap - A...

  4. Model output and data used for analysis

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Model output and data used for analysis [Dataset]. https://catalog.data.gov/dataset/model-output-and-data-used-for-analysis
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The modeled data in these archives are in the NetCDF format (https://www.unidata.ucar.edu/software/netcdf/). NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. It is also a community standard for sharing scientific data. The Unidata Program Center supports and maintains netCDF programming interfaces for C, C++, Java, and Fortran. Programming interfaces are also available for Python, IDL, MATLAB, R, Ruby, and Perl. Data in netCDF format is: • Self-Describing. A netCDF file includes information about the data it contains. • Portable. A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers. • Scalable. Small subsets of large datasets in various formats may be accessed efficiently through netCDF interfaces, even from remote servers. • Appendable. Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure. • Sharable. One writer and multiple readers may simultaneously access the same netCDF file. • Archivable. Access to all earlier forms of netCDF data will be supported by current and future versions of the software. Pub_figures.tar.zip Contains the NCL scripts for figures 1-5 and Chesapeake Bay Airshed shapefile. The directory structure of the archive is ./Pub_figures/Fig#_data. Where # is the figure number from 1-5. EMISS.data.tar.zip This archive contains two NetCDF files that contain the emission totals for 2011ec and 2040ei emission inventories. The name of the files contain the year of the inventory and the file header contains a description of each variable and the variable units. EPIC.data.tar.zip contains the monthly mean EPIC data in NetCDF format for ammonium fertilizer application (files with ANH3 in the name) and soil ammonium concentration (files with NH3 in the name) for historical (Hist directory) and future (RCP-4.5 directory) simulations. WRF.data.tar.zip contains mean monthly and seasonal data from the 36km downscaled WRF simulations in the NetCDF format for the historical (Hist directory) and future (RCP-4.5 directory) simulations. CMAQ.data.tar.zip contains the mean monthly and seasonal data in NetCDF format from the 36km CMAQ simulations for the historical (Hist directory), future (RCP-4.5 directory) and future with historical emissions (RCP-4.5-hist-emiss directory). This dataset is associated with the following publication: Campbell, P., J. Bash, C. Nolte, T. Spero, E. Cooter, K. Hinson, and L. Linker. Projections of Atmospheric Nitrogen Deposition to the Chesapeake Bay Watershed. Journal of Geophysical Research - Biogeosciences. American Geophysical Union, Washington, DC, USA, 12(11): 3307-3326, (2019).

  5. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  6. f

    Descriptive statistics.

    • plos.figshare.com
    xls
    Updated Oct 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha (2023). Descriptive statistics. [Dataset]. http://doi.org/10.1371/journal.pgph.0002475.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.

  7. Last.fm Data Analysis

    • kaggle.com
    zip
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zirian Afandy (2024). Last.fm Data Analysis [Dataset]. https://www.kaggle.com/datasets/ziriantahirli/last-fm-data-analysis
    Explore at:
    zip(92576 bytes)Available download formats
    Dataset updated
    Jun 28, 2024
    Authors
    Zirian Afandy
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset illuminates Spotify's artist landscape. Data analysis using univariate, bivariate, and multivariate methods revealed significant trends and patterns. The findings emphasise the popularity of a few top artists and the importance of understanding their success

    drivers. Future data collection efforts include retrieving additional metadata using MBIDs and leveraging the Last.fm API will enrich the dataset and support ongoing analysis.

  8. Big Data Market Analysis, Size, and Forecast 2025-2029: North America (US...

    • technavio.com
    pdf
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (Australia, China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Market Size 2025-2029

    The big data market size is valued to increase USD 193.2 billion, at a CAGR of 13.3% from 2024 to 2029. Surge in data generation will drive the big data market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 36% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 55.30 billion in 2023
    By Type - Services segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 193.04 billion
    Market Future Opportunities: USD 193.20 billion
    CAGR from 2024 to 2029 : 13.3%
    

    Market Summary

    In the dynamic realm of business intelligence, the market continues to expand at an unprecedented pace. According to recent estimates, this market is projected to reach a value of USD 274.3 billion by 2022, underscoring its significant impact on modern industries. This growth is driven by several factors, including the increasing volume, variety, and velocity of data generation. Moreover, the adoption of advanced technologies, such as machine learning and artificial intelligence, is enabling businesses to derive valuable insights from their data. Another key trend is the integration of blockchain solutions into big data implementation, enhancing data security and trust.
    However, this rapid expansion also presents challenges, such as ensuring data privacy and security, managing data complexity, and addressing the skills gap. Despite these challenges, the future of the market looks promising, with continued innovation and investment in data analytics and management solutions. As businesses increasingly rely on data to drive decision-making and gain a competitive edge, the importance of effective big data strategies will only grow.
    

    What will be the Size of the Big Data Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Big Data Market Segmented?

    The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud-based
      Hybrid
    
    
    Type
    
      Services
      Software
    
    
    End-user
    
      BFSI
      Healthcare
      Retail and e-commerce
      IT and telecom
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the ever-evolving landscape of data management, the market continues to expand with innovative technologies and solutions. On-premises big data software deployment, a popular choice for many organizations, offers control over hardware and software functions. Despite the high upfront costs for hardware purchases, it eliminates recurring monthly payments, making it a cost-effective alternative for some. However, cloud-based deployment, with its ease of access and flexibility, is increasingly popular, particularly for businesses dealing with high-velocity data ingestion. Cloud deployment, while convenient, comes with its own challenges, such as potential security breaches and the need for companies to manage their servers.

    On-premises solutions, on the other hand, provide enhanced security and control, but require significant capital expenditure. Advanced analytics platforms, such as those employing deep learning models, parallel processing, and machine learning algorithms, are transforming data processing and analysis. Metadata management, data lineage tracking, and data versioning control are crucial components of these solutions, ensuring data accuracy and reliability. Data integration platforms, including IoT data integration and ETL process optimization, are essential for seamless data flow between systems. Real-time analytics, data visualization tools, and business intelligence dashboards enable organizations to make data-driven decisions. Data encryption methods, distributed computing, and data lake architectures further enhance data security and scalability.

    Request Free Sample

    The On-premises segment was valued at USD 55.30 billion in 2019 and showed a gradual increase during the forecast period.

    With the integration of AI-powered insights, natural language processing, and predictive modeling, businesses can unlock valuable insights from their data, improving operational efficiency and driving growth. A recent study reveals that the market is projected to reach USD 274.3 billion by 2022, underscoring its growing importance in today's data-driven economy. This continuous evolution of big data technologies and solutions underscores the need for robust data governa

  9. f

    Big Data Analytics Market Size, Value & Share Analysis [2032]

    • fortunebusinessinsights.com
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fortune Business Insights (2025). Big Data Analytics Market Size, Value & Share Analysis [2032] [Dataset]. https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset authored and provided by
    Fortune Business Insights
    License

    https://www.fortunebusinessinsights.com/privacy/https://www.fortunebusinessinsights.com/privacy/

    Area covered
    Worldwide
    Description

    The global big data analytics market size was valued at $307.52 billion in 2023 & is projected to grow from $348.21 billion in 2024 to $961.89 billion by 2032

  10. Homestays data

    • kaggle.com
    zip
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Priyanshu shukla (2024). Homestays data [Dataset]. https://www.kaggle.com/datasets/priyanshu594/homestays-data
    Explore at:
    zip(44330689 bytes)Available download formats
    Dataset updated
    May 25, 2024
    Authors
    Priyanshu shukla
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Objective: Build a robust predictive model to estimate the log_price of homestay listings based on comprehensive analysis of their characteristics, amenities, and host information. First make sure that the entire dataset is clean and ready to be used. 1. Feature Engineering: Task: Enhance the dataset by creating actionable and insightful features. Calculate Host_Tenure by determining the number of years from host_since to the current date, providing a measure of host experience. Generate Amenities_Count by counting the items listed in the amenities array to quantify property offerings. Determine Days_Since_Last_Review by calculating the days between last_review and today to assess listing activity and relevance. 2. Exploratory Data Analysis (EDA): Task: Conduct a deep dive into the dataset to uncover underlying patterns and relationships. Analyze how pricing (log_price) correlates with both categorical (such as room_type and property_type) and numerical features (like accommodates and number_of_reviews). Utilize statistical tools and visualizations such as correlation matrices, histograms for distribution analysis, and scatter plots to explore relationships between variables. 3. Geospatial Analysis: Task: Investigate the geographical data to understand regional pricing trends. Plot listings on a map using latitude and longitude data to visually assess price distribution. Examine if certain neighbourhoods or proximity to city centres influence pricing, providing a spatial perspective to the pricing strategy. 4. Sentiment Analysis on Textual Data: Task: Apply advanced natural language processing techniques to the description texts to extract sentiment scores. Use sentiment analysis tools to determine whether positive or negative descriptions influence listing prices, incorporating these findings into the predictive model being trained as a feature. 5. Amenities Analysis: Task: Thoroughly parse and analyse the amenities provided in the listings. Identify which amenities are most associated with higher or lower prices by applying statistical tests to determine correlations, thereby informing both pricing strategy and model inputs. 6. Categorical Data Encoding: Task: Convert categorical data into a format suitable for machine learning analysis. Apply one-hot encoding to variables like room_type, city, and property_type, ensuring that the model can interpret these as distinct features without any ordinal implication. 7. Model Development and Training: Task: Design and train predictive models to estimate log_price. Begin with a simple linear regression to establish a baseline, then explore more complex models such as RandomForest and GradientBoosting to better capture non-linear relationships and interactions between features. Document (briefly within Jupyter notebook itself) the model-building process, specifying the choice of algorithms and rationale. 8. Model Optimization and Validation: Task: Systematically optimize the models to achieve the best performance. Employ techniques like grid search to experiment with different hyperparameters settings. Validate model choices through techniques like k-fold cross-validation, ensuring the model generalizes well to unseen data. 9. Feature Importance and Model Insights: Task: Analyze the trained models to identify which features most significantly impact log_price. Utilize model-specific methods like feature importance scores for tree-based models and SHAP values for an in depth understanding of feature contributions. 10. Predictive Performance Assessment: Task: Critically evaluate the performance of the final model on a reserved test set. Use metrics such as Root Mean Squared Error (RMSE) and R-squared to assess accuracy and goodness of fit. Provide a detailed analysis of the residuals to check for any patterns that might suggest model biases or misfit.

  11. D

    Collision between biological process and statistical analysis revealed by...

    • datasetcatalog.nlm.nih.gov
    • data.niaid.nih.gov
    • +1more
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dingemanse, Niels; Allegue, Hassen; Westneat, David; Dochtermann, Ned; Class, Barbara; Nakagawa, Shinichi; Schielzeth, Holger; Martin, Julien; Reale, Denis; Garamszegi, Laszlo; Araya-Ajoy, Yimen (2020). Collision between biological process and statistical analysis revealed by mean-centering [Dataset]. http://doi.org/10.5061/dryad.sj3tx9632
    Explore at:
    Dataset updated
    Sep 8, 2020
    Authors
    Dingemanse, Niels; Allegue, Hassen; Westneat, David; Dochtermann, Ned; Class, Barbara; Nakagawa, Shinichi; Schielzeth, Holger; Martin, Julien; Reale, Denis; Garamszegi, Laszlo; Araya-Ajoy, Yimen
    Description

    Animal ecologists often collect hierarchically-structured data and analyze these with linear mixed-effects models. Specific complications arise when the effect sizes of covariates vary on multiple levels (e.g., within vs among subjects). Mean-centering of covariates within subjects offers a useful approach in such situations, but is not without problems. A statistical model represents a hypothesis about the underlying biological process. Mean-centering within clusters assumes that the lower level responses (e.g. within subjects) depend on the deviation from the subject mean (relative) rather than on absolute values of the covariate. This may or may not be biologically realistic. We show that mismatch between the nature of the generating (i.e., biological) process and the form of the statistical analysis produce major conceptual and operational challenges for empiricists. We explored the consequences of mismatches by simulating data with three response-generating processes differing in the source of correlation between a covariate and the response. These data were then analyzed by three different analysis equations. We asked how robustly different analysis equations estimate key parameters of interest and under which circumstances biases arise. Mismatches between generating and analytical equations created several intractable problems for estimating key parameters. The most widely misestimated parameter was the among-subject variance in response. We found that no single analysis equation was robust in estimating all parameters generated by all equations. Importantly, even when response-generating and analysis equations matched mathematically, bias in some parameters arose when sampling across the range of the covariate was limited. Our results have general implications for how we collect and analyze data. They also remind us more generally that conclusions from statistical analysis of data are conditional on a hypothesis, sometimes implicit, for the process(es) that generated the attributes we measure. We discuss strategies for real data analysis in face of uncertainty about the underlying biological process.

  12. D

    Data Analysis Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analysis Services Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analysis-services-1366877
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Analysis Services market is poised for substantial expansion, projected to reach a significant valuation by 2060. Driven by an ever-increasing volume of digital data and the imperative for businesses to extract actionable insights for strategic decision-making, the market is expected to grow at a Compound Annual Growth Rate (CAGR) of 10.2% from 2025 to 2033. This robust growth is fueled by the transformative power of data in optimizing operations, enhancing customer experiences, and identifying new revenue streams across diverse industries. Key applications such as retail are leveraging data analysis for personalized marketing and inventory management, while the medical industry utilizes it for predictive diagnostics and drug discovery. Manufacturing sectors are benefiting from data-driven process optimization and predictive maintenance, further underscoring the broad applicability and essential nature of these services. The increasing adoption of advanced analytics techniques, including AI and machine learning, is a critical factor propelling this market forward, enabling more sophisticated data interpretation and forecasting. The competitive landscape features a blend of established technology giants and specialized analytics firms, all vying to provide cutting-edge solutions. Major players like IBM, Microsoft, Oracle, and SAP are investing heavily in their data analysis platforms and service offerings, while companies such as Accenture, PwC, and SAS Institute are recognized for their consulting and implementation expertise. Trends like the rise of cloud-based analytics, the demand for real-time data processing, and the growing emphasis on data governance and security are shaping the market's trajectory. While the potential for significant returns and competitive advantage through data analysis remains a powerful driver, challenges such as data privacy concerns, the scarcity of skilled data professionals, and the cost of implementing sophisticated analytics solutions can act as restraints. Nevertheless, the overarching demand for data-driven insights to navigate an increasingly complex business environment ensures a dynamic and growth-oriented future for the Data Analysis Services market. This report delves into the dynamic global Data Analysis Services market, providing an in-depth analysis from the historical period of 2019-2024 through to an estimated forecast period of 2025-2033. With a base year of 2025, the study meticulously examines market size, growth drivers, challenges, and future trends, offering actionable insights for stakeholders. The projected market value is expected to reach multi-million dollar figures, reflecting the escalating importance of data-driven decision-making across industries.

  13. m

    Data from: A Semiotics Analysis Found on Music Video of You Belong with Me...

    • data.mendeley.com
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PRAGMATICA; Journal of Linguistics and Literature (2023). A Semiotics Analysis Found on Music Video of You Belong with Me by Taylor Swift [Dataset]. http://doi.org/10.17632/fp46m4gvps.1
    Explore at:
    Dataset updated
    Aug 22, 2023
    Authors
    PRAGMATICA; Journal of Linguistics and Literature
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This research entitles “A Semiotics Analysis Found on Music Vidio of You Belong with Me”.The aim of this research was to investigate and analyze the verbal and visual signs and the meaning itself in the music video of “You Belong with Me” by Taylor Swift. The type of this research was qualitative research. In collecting data, the writer used the method of observation and documentation by classifying videos into pictures in the form of sequences.The results of this study indicate that the semiotic signs contained in this music video are in the form of visual displays contained in body language in the music video which tells about a male friend that Swift likes who actually has a lover, and verbal signs contained in the music video is a paper that contains writing that is used to communicate. Based on the result of the analysis,it can be concluded as there are two classifications,namely: verbal sign and visual sign. In verbal sign, it was found eight data. In visual sign, it was found seven data. The concept of music video of You Belong With Me describe someone who is in love with someone where that person has been with a lover who doesn't appreciate it at all. In the data found, verbal and visual sign explained about caring, disappointment, jealousy, and express feelings.

  14. Importance Analysis about fqid Features - FI Data

    • kaggle.com
    zip
    Updated Apr 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tsuyoshi Fujii (2023). Importance Analysis about fqid Features - FI Data [Dataset]. https://www.kaggle.com/datasets/tsuyoshifujii/importance-analysis-about-fqid-features-fi-data
    Explore at:
    zip(207835 bytes)Available download formats
    Dataset updated
    Apr 12, 2023
    Authors
    Tsuyoshi Fujii
    Description

    Data related to the competition "Predict Student Performance from Game Play"

    This is a pickle file that summarizes the results of the Feature Importance calculations. The notebook of Train part is here.

  15. s

    10 Important Questions on Fundamental Analysis of Stocks – Meaning,...

    • smartinvestello.com
    html
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Investello (2025). 10 Important Questions on Fundamental Analysis of Stocks – Meaning, Parameters, and Step-by-Step Guide - Data Table [Dataset]. https://smartinvestello.com/10-questions-on-fundamental-analysis/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2025
    Dataset authored and provided by
    Smart Investello
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset extracted from the post 10 Important Questions on Fundamental Analysis of Stocks – Meaning, Parameters, and Step-by-Step Guide on Smart Investello.

  16. l

    Artificial Symbol Learning With Training - Experiment 2 Data analysis

    • repository.lboro.ac.uk
    zip
    Updated Jan 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Camilla Gilmore; Matthew Inglis; Hanna Weiers (2025). Artificial Symbol Learning With Training - Experiment 2 Data analysis [Dataset]. http://doi.org/10.17028/rd.lboro.13645850.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    Loughborough University
    Authors
    Camilla Gilmore; Matthew Inglis; Hanna Weiers
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Zip file containing all data and analysis files for Experiment 2 in:Weiers, H., Inglis, M., & Gilmore, C. (under review). Learning artificial number symbols with ordinal and magnitude information.Article abstractThe question of how numerical symbols gain semantic meaning is a key focus of mathematical cognition research. Some have suggested that symbols gain meaning from magnitude information, by being mapped onto the approximate number system, whereas others have suggested symbols gain meaning from their ordinal relations to other symbols. Here we used an artificial symbol learning paradigm to investigate the effects of magnitude and ordinal information on number symbol learning. Across two experiments, we found that after either magnitude or ordinal training, adults successfully learned novel symbols and were able to infer their ordinal and magnitude meanings. Furthermore, adults were able to make relatively accurate judgements about, and map between, the novel symbols and non-symbolic quantities (dot arrays). Although both ordinal and magnitude training was sufficient to attach meaning to the symbols, we found beneficial effects on the ability to learn and make numerical judgements about novel symbols when combining small amounts of magnitude information for a symbol subset with ordinal information about the whole set. These results suggest that a combination of magnitude and ordinal information is a plausible account of the symbol learning process.© The Authors

  17. Data from: Meaning of derivative in the book tasks of 1st of “Bachillerato”

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    María Fernanda Vargas; José Antonio Fernández-Plaza; Juan Francisco Ruiz-Hidalgo (2023). Meaning of derivative in the book tasks of 1st of “Bachillerato” [Dataset]. http://doi.org/10.6084/m9.figshare.14304760.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    María Fernanda Vargas; José Antonio Fernández-Plaza; Juan Francisco Ruiz-Hidalgo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Due to the importance of textbooks within the processes of teaching and learning in Mathematics, this article focuses on the tasks proposed in five textbooks of 1st of Bachillerato for this topic. The goal is to identify meanings of derivative in the textbooks through the proposed tasks. It is a quantitative research in which, by means of a cluster analysis, the tasks were grouped according to similarity. The results show that the books emphasize three meanings of the derivative: one procedural-algebraic, one algorithmic, and finally another conceptual-geometric meaning, all of them dominated by the symbolic representation system and that exclusively show a mathematical context.

  18. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo

  19. u

    NCEP Re-analysis Monthly Mean Data 2001-2004 for SBI Domain (Matlab) [NCEP]

    • data.ucar.edu
    • arcticdata.io
    • +1more
    matlab
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kent Moore (2025). NCEP Re-analysis Monthly Mean Data 2001-2004 for SBI Domain (Matlab) [NCEP] [Dataset]. http://doi.org/10.5065/D6ZK5DR6
    Explore at:
    matlabAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Kent Moore
    Time period covered
    Jan 1, 2001 - Oct 31, 2004
    Area covered
    Description

    This data set contains National Centers for Environmental Prediction (NCEP) re-analysis monthly mean data 2001-2004 for the SBI domain in Matlab format.

  20. m

    COVID-19 Combined Data-set with Improved Measurement Errors

    • data.mendeley.com
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Afshin Ashofteh (2020). COVID-19 Combined Data-set with Improved Measurement Errors [Dataset]. http://doi.org/10.17632/nw5m4hs3jr.3
    Explore at:
    Dataset updated
    May 13, 2020
    Authors
    Afshin Ashofteh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Report Analytics (2025). Exploratory Data Analysis (EDA) Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/exploratory-data-analysis-eda-tools-54257

Exploratory Data Analysis (EDA) Tools Report

Explore at:
ppt, doc, pdfAvailable download formats
Dataset updated
Apr 2, 2025
Dataset authored and provided by
Market Report Analytics
License

https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The Exploratory Data Analysis (EDA) tools market is experiencing robust growth, driven by the increasing need for businesses to derive actionable insights from their ever-expanding datasets. The market, currently estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $45 billion by 2033. This growth is fueled by several factors, including the rising adoption of big data analytics, the proliferation of cloud-based solutions offering enhanced accessibility and scalability, and the growing demand for data-driven decision-making across diverse industries like finance, healthcare, and retail. The market is segmented by application (large enterprises and SMEs) and type (graphical and non-graphical tools), with graphical tools currently holding a larger market share due to their user-friendly interfaces and ability to effectively communicate complex data patterns. Large enterprises are currently the dominant segment, but the SME segment is anticipated to experience faster growth due to increasing affordability and accessibility of EDA solutions. Geographic expansion is another key driver, with North America currently holding the largest market share due to early adoption and a strong technological ecosystem. However, regions like Asia-Pacific are exhibiting high growth potential, fueled by rapid digitalization and a burgeoning data science talent pool. Despite these opportunities, the market faces certain restraints, including the complexity of some EDA tools requiring specialized skills and the challenge of integrating EDA tools with existing business intelligence platforms. Nonetheless, the overall market outlook for EDA tools remains highly positive, driven by ongoing technological advancements and the increasing importance of data analytics across all sectors. The competition among established players like IBM Cognos Analytics and Altair RapidMiner, and emerging innovative companies like Polymer Search and KNIME, further fuels market dynamism and innovation.

Search
Clear search
Close search
Google apps
Main menu