100+ datasets found
  1. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLACKAMAS COUNTY, OREGON (AND...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +4more
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency (Point of Contact) (2023). DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLACKAMAS COUNTY, OREGON (AND INCORPORATED AREAS) [Dataset]. https://catalog.data.gov/dataset/digital-flood-insurance-rate-map-database-clackamas-county-oregon-and-incorporated-areas
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Area covered
    Clackamas County, Oregon
    Description

    The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.

  2. ACS Race and Hispanic Origin Variables - Boundaries

    • hub.arcgis.com
    • heat.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Race and Hispanic Origin Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/23ab8028f1784de4b0810104cd5d1c8f
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. c

    Connecticut and Vicinity State Boundary Set

    • geodata.ct.gov
    • data.ct.gov
    • +4more
    Updated Oct 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). Connecticut and Vicinity State Boundary Set [Dataset]. https://geodata.ct.gov/maps/CTDEEP::connecticut-and-vicinity-state-boundary-set
    Explore at:
    Dataset updated
    Oct 30, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Connecticut and Vicinity State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)

  4. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  5. Data from: A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adrien Ycart; Emmanouil Benetos; Adrien Ycart; Emmanouil Benetos (2021). A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations [Dataset]. http://doi.org/10.5281/zenodo.1317039
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Adrien Ycart; Emmanouil Benetos; Adrien Ycart; Emmanouil Benetos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MAPS dataset is one of the most used benchmark dataset for automatic music transcription. We propose here an updated version of the ground truth MIDI files, containing, on top of the original pitch, onset and offsets, additional annotations.

    The annotations include:

    • Tempo curve

    • Time signature

    • Durations of notes in fraction of a quarter note (some of them are approximate)

    • Key signature (always written as the major relative)

    • Sustain pedal activation

    • Separate left and right hand staff

    • Text annotations from the score (tempo indications, coda...).

    If you use these annotations in a published research project, please cite:
    Adrien Ycart and Emmanouil Benetos. “A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations” 19th International Society for Music Information Retrieval Conference Late Breaking and Demo Papers, September 2018, Paris, France.

    More information is available at: http://c4dm.eecs.qmul.ac.uk/ycart/a-maps.html

  6. g

    DC Office of Tax and Revenue Real Property Assessment Map App | gimi9.com

    • gimi9.com
    Updated Jul 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). DC Office of Tax and Revenue Real Property Assessment Map App | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_dc-office-of-tax-and-revenue-real-property-assessment-map-app/
    Explore at:
    Dataset updated
    Jul 26, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Washington
    Description

    The DC Office of the Chief Financial Officer (OCFO), Office of Tax and Revenue (OTR), Real Property Tax Administration (RPTA) values all real property in the District of Columbia. This public interactive Real Property Assessment map application accompanies the OCFO MyTax DC and OTR websites. Use this mapping application to search for and view all real property, assessment valuation data, assessment neighborhood areas and sub-areas, detailed assessment information, and many real property valuation reports by various political and administrative areas. View by other administrative areas such as DC Wards, ANCs, DC Squares, and by specific real property characteristics such as property type and/or sale date. If you have questions, comments, or suggestions regarding the Real Property Assessment Map, contact the Real Property Assessment Division GIS Program at (202) 442-6484 or maps.title@dc.gov.

  7. U

    Digital subsurface data from previously published contoured maps of the top...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donald Sweetkind (2024). Digital subsurface data from previously published contoured maps of the top of the Dakota Sandstone, Uinta and Piceance basins, Utah and Colorado [Dataset]. http://doi.org/10.5066/P9CX993S
    Explore at:
    Dataset updated
    Jul 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Donald Sweetkind
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2022
    Area covered
    Utah, Colorado
    Description

    The top of the Upper Cretaceous Dakota Sandstone is present in the subsurface throughout the Uinta and Piceance basins of UT and CO and is easily recognized in the subsurface from geophysical well logs. This digital data release captures in digital form the results of two previously published contoured subsurface maps that were constructed on the top of Dakota Sandstone datum; one of the studies also included a map constructed on the top of the overlying Mancos Shale. A structure contour map of the top of the Dakota Sandstone was constructed as part of a U.S. Geological Survey Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado (Roberts, 2003). This surface, constructed using data from oil and gas wells, from digital geologic maps of Utah and Colorado, and from thicknesses of overlying stratigraphic units, depicts the overall configuration of major structural trends of the present-day Uinta and Piceance basins and was used to ...

  8. Hurricane and Cyclone Web Map

    • hub.arcgis.com
    • disasters.amerigeoss.org
    • +1more
    Updated Jun 19, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2012). Hurricane and Cyclone Web Map [Dataset]. https://hub.arcgis.com/maps/2f5a28f82f4d41ec8dbe6cf96375a970
    Explore at:
    Dataset updated
    Jun 19, 2012
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Area covered
    Description

    This map is intended to provide general awareness of current and recent tropical weather around the world. It is not intended to replace authoritative government websites but rather to provide situational awareness.

    This map contains Live Feeds from the Living Atlas including - Active Hurricanes, Recent Hurricanes, Weather Warnings and Watches, Short-Term Weather Warnings, and NOAA Colorized Satellite Imagery. Weather Radar Data is provided courtesy of DTN.

    This map is provided by the Esri Disaster Response Program using the Public Information Solution template. For other hurricane related content and data, please visit the DRP Hub Hurricane Page.

  9. d

    Digital database of structure contour and isopach maps of multiple...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital database of structure contour and isopach maps of multiple subsurface units, Michigan and Illinois Basins, USA [Dataset]. https://catalog.data.gov/dataset/digital-database-of-structure-contour-and-isopach-maps-of-multiple-subsurface-units-michig-634cc
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    This digital data release presents contour data from multiple subsurface geologic horizons as presented in previously published summaries of the regional subsurface configuration of the Michigan and Illinois Basins. The original maps that served as the source of the digital data within this geodatabase are from the Geological Society of America’s Decade of North American Geology project series, “The Geology of North America” volume D-2, chapter 13 “The Michigan Basin” and chapter 14 “Illinois Basin Region”. Contour maps in the original published chapters were generated from geophysical well logs (generally gamma-ray) and adapted from previously published contour maps. The published contour maps illustrated the distribution sedimentary strata within the Illinois and Michigan Basin in the context of the broad 1st order supercycles of L.L. Sloss including the Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, and Tejas supersequences. Because these maps represent time-transgressive surfaces, contours frequently delineate the composite of multiple named sedimentary formations at once. Structure contour maps on the top of the Precambrian basement surface in both the Michigan and Illinois basins illustrate the general structural geometry which undergirds the sedimentary cover. Isopach maps of the Sauk 2 and 3, Tippecanoe 1 and 2, Kaskaskia 1 and 2, Absaroka, and Zuni sequences illustrate the broad distribution of sedimentary units in the Michigan Basin, as do isopach maps of the Sauk, Upper Sauk, Tippecanoe 1 and 2, Lower Kaskaskia 1, Upper Kaskaskia 1-Lower Kaskaskia 2, Kaskaskia 2, and Absaroka supersequences in the Illinois Basins. Isopach contours and structure contours were formatted and attributed as GIS data sets for use in digital form as part of U.S. Geological Survey’s ongoing effort to inventory, catalog, and release subsurface geologic data in geospatial form. This effort is part of a broad directive to develop 2D and 3D geologic information at detailed, national, and continental scales. This data approximates, but does not strictly follow the USGS National Cooperative Geologic Mapping Program's GeMS data structure schema for geologic maps. Structure contour lines and isopach contours for each supersequence are stored within separate “IsoValueLine” feature classes. These are distributed within a geographic information system geodatabase and are also saved as shapefiles. Contour data is provided in both feet and meters to maintain consistency with the original publication and for ease of use. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units referenced herein. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and accompanying nonspatial tables.

  10. DOI: 10.3334/ORNLDAAC/1386

    • daac.ornl.gov
    • s.cnmilf.com
    • +4more
    csv, shapefile
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WALKER, D.A. (2017). DOI: 10.3334/ORNLDAAC/1386 [Dataset]. http://doi.org/10.3334/ORNLDAAC/1386
    Explore at:
    csv, shapefile(2.9 MB), csv, shapefileAvailable download formats
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Authors
    WALKER, D.A.
    Time period covered
    Aug 1, 2000 - Dec 31, 2012
    Area covered
    Description

    This dataset includes vegetation cover maps, Normalized Difference Vegetation Index (NDVI) maps, snow depth and thaw depth data that were obtained as part of a biocomplexity project on the North Slope of Alaska, USA, and the Northwest Territories (NWT), Canada. In Alaska, seven sites are located along the Dalton Highway and in the Prudhoe Bay Oilfield area, forming a transect across the climate gradient of the North Slope. From South to North, the sites are Happy Valley, Sagwon (an acidic and nonacidic site), Franklin Bluffs, Deadhorse, West Dock and Howe Island. Four sites are in the NWT, forming a latitudinal gradient from South to North; the sites include Inuvik, Green Cabin, Mould Bay, and Isachsen.

  11. Land Status and Encumbrance Map

    • usfs.hub.arcgis.com
    Updated Sep 8, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2012). Land Status and Encumbrance Map [Dataset]. https://usfs.hub.arcgis.com/maps/ec8d186709cf46e48c238cce43fc4572
    Explore at:
    Dataset updated
    Sep 8, 2012
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    A map service designed to portray US Forest Service Land Status Record System data. The map service is for querying and displaying Land Status Record System information for Lands under Forest Service Management. Using this service in the US Forest Service Map Service Viewer the user will be able to view Land Status Record System layers with various supplied background imagery and layers.

  12. a

    Broadband Coverage and Speed Regional Map for Fairbanks NSB

    • alaska-economic-data-dcced.hub.arcgis.com
    • hub.arcgis.com
    • +3more
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Commerce, Community, & Economic Development (2021). Broadband Coverage and Speed Regional Map for Fairbanks NSB [Dataset]. https://alaska-economic-data-dcced.hub.arcgis.com/documents/a02dae8a9be541279b194c5be8233bea
    Explore at:
    Dataset updated
    Jul 22, 2021
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    PDF Map of FCC Form 477 provider reported maximum download speeds by census block for January - June 2020. This map seeks to highlight areas that are undeserved by terrestrial broadband (fiber/cable/dsl on the ground), with "underserved" defined as down/up speeds less than 25/3 Mbps.These data represent a static snapshot of provider reported coverage between January 2020 and June 2020. Maps also depict the locations of federally recognized tribes, Alaskan communities, ANCSA and borough boundaries.Broadband coverage is represented using provider reported speeds under the FCC Form 477 the amalgamated broadband speed measurement category based on Form 477 "All Terrestrial Broadband" as a proxy for coverage. This field is unique to the NBAM platform. These maps do not include satellite internet coverage (and may not include microwave coverage through the TERRA network for all connected areas).This map was produced by DCRA using data provided by NTIA through the NBAM platform as part of a joint data sharing agreement undertaken in the year 2021. Maps were produced using the feature layer "NBAM Data by Census Geography v4": https://maps.ntia.gov/arcgis/home/item.html?id=8068e420210542ba8d2b02c1c971fb20Coverage is symbolized using the following legend:No data avalible or no terrestrial coverage: Grey or transparent< 10 Mbps Maximum Reported Download: Red10-25 Mbps Maximum Reported Download: Orange25-50 Mbps Maximum Reported Download: Yellow50-100 Mbps Maximum Reported Download: Light Blue100-1000 Mbps Maximum Reported Download: Dark Blue_Description from layer "NBAM Data by Census Geography v4":This layer is a composite of seven sublayers with adjacent scale ranges: States, Counties, Census Tracts, Census Block Groups, Census Blocks, 100m Hexbins and 500m Hexbins. Each type of geometry contains demographic and internet usage data taken from the following sources: US Census Bureau 2010 Census data (2010) USDA Non-Rural Areas (2013) FCC Form 477 Fixed Broadband Deployment Data (Jan - Jun 2020) Ookla Consumer-Initiated Fixed Wi-Fi Speed Test Results (Jan - Jun 2020) FCC Population, Housing Unit, and Household Estimates (2019). Note that these are derived from Census and other data. BroadbandNow Average Minimum Terrestrial Broadband Plan Prices (2020) M-Lab (Jan - Jun 2020)Some data values are unique to the NBAM platform: US Census and USDA Rurality values. For units larger than blocks, block count (urban/rural) was used to determine this. Some tracts and block groups have an equal number of urban and rural blocks—so a new coded value was introduced: S (split). All blocks are either U or R, while tracts and block groups can be U, R, or S. Amalgamated broadband speed measurement categories based on Form 477. These include: 99: All Terrestrial Broadband Plus Satellite 98: All Terrestrial Broadband 97: Cable Modem 96: DSL 95: All Other (Electric Power Line, Other Copper Wireline, Other) Computed differences between FCC Form 477 and Ookla values for each area. These are reflected by six fields containing the difference of maximum, median, and minimum upload and download speed values.The FCC Speed Values method is applied to all speeds from all data sources within the custom-configured Omnibus service pop-up. This includes: Geography: State, County, Tract, Block Group, Block, Hex Bins geographies Data source: all data within the Omnibus, i.e. FCC, Ookla, M-Lab Representation: comparison tables and single speed values

  13. n

    All About Watersheds GIS Maps and Data

    • catalog.newmexicowaterdata.org
    html
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    All About Watersheds (2024). All About Watersheds GIS Maps and Data [Dataset]. https://catalog.newmexicowaterdata.org/dataset/all-about-watersheds-gis-maps-and-data
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 13, 2024
    Dataset provided by
    All About Watersheds
    Description

    Part of the Clearinghouse library. Functions also as a shared workspace. Content can be uploaded, organized topically, and searched by users of the clearinghouse.

  14. Digital Geologic Map of International Boundary and Water Commission Mapping...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico (NPS, GRD, GRI, AMIS, IBWC digital map) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-map-of-international-boundary-and-water-commission-mapping-in-amistad-nat
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Mexico, Texas
    Description

    The Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (ibwc_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/ibwc_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (ibwc_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.

  15. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  16. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    pdf, csv(12977), zip(73817620), pdf(3684753), website, zip(13901824), pdf(4856863), web videos, zip(578260992), pdf(1436424), zip(128966494), pdf(182651), zip(972664), zip(10029073), zip(1647291), pdf(1175775), zip(4657694), pdf(1634485), zip(15824984), zip(39288832), arcgis geoservices rest api, pdf(437025), pdf(9867020)Available download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  17. Level 2 - Sea Level Rise and Population Map

    • noaa.hub.arcgis.com
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Level 2 - Sea Level Rise and Population Map [Dataset]. https://noaa.hub.arcgis.com/maps/ee48384adce34b99bb066a94b63d28d9
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Data in the Classroom is an online curriculum to foster data literacy. This Investigating Sea Level Using Data in the Classroom module is geared towards grades 6 - 12. Visit Data in the Classroom for more information.This application is the Investigating Sea Level module.This module was developed to engage students in increasingly sophisticated modes of understanding and manipulation of data. It was completed prior to the release of the Next Generation Science Standards (NGSS)* and has recently been adapted to incorporate some of the innovations described in the NGSS.Each level of the module provides learning experiences that engage students in the three dimensions of the NGSS Framework while building towards competency in targeted performance expectations. Note: this document identifies the specific practice, core idea and concept directly associated with a performance expectation (shown in parentheses in the tables) but also includes additional practices and concepts that can help students build toward a standard.*NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.

  18. Reference Data Web Map - Central and Northern Tongass – Existing Vegetation

    • usfs.hub.arcgis.com
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Reference Data Web Map - Central and Northern Tongass – Existing Vegetation [Dataset]. https://usfs.hub.arcgis.com/maps/48c139645fad4f0c946137722d089ffa
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This web map contains reference data points with specific site information on vegetation dominance type and tree size for the Tongass National Forest to provide up-to-date and more complete information about vegetative communities, structure, and patterns across the project area. Reference data for this project came from numerous sources including: 1) Forest Service field crews collecting vegetation information specific to this project; 2) GO field crews collecting vegetation information for this project; 3) helicopter survey data; 4) Young-Growth Inventory data; 5) legacy data from previous Forest Service survey plots and the Forest Inventory and Analysis (FIA) program (FIA data are not included in this database); 6) legacy data from the prior Yakutat vegetation mapping project; and 7) image interpretation. This database contains reference data collected by GO staff for the Central Tongass Existing Vegetation Type Map. Tongass National Forest personnel collected most of the ground data that was targeted for this mapping effort using a variety of means—primarily by foot using existing trail and road infrastructure, or by boat—to collect samples that capture the diversity of vegetation across the project area. Helicopter survey data were collected over the course of three weeks in July 2024 for the Northern Tongass, with the goal of reaching difficult to access areas. The Young-Growth Inventory information was leveraged as reference data from actively managed forest stands. Legacy data was cross-referenced with the classification key to label each plot with a vegetation type. All sites were reviewed within the context of their corresponding segment using high-resolution imagery. For more detailed information on reference data methodology please see the Central and Northern Tongass Existing Vegetation Project Report.

  19. a

    AAG Interactive map - forest icons and unique colors - 5.5.17-Copy

    • usfs.hub.arcgis.com
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). AAG Interactive map - forest icons and unique colors - 5.5.17-Copy [Dataset]. https://usfs.hub.arcgis.com/maps/353ffc4972544790a971eb87b5b659db
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    U.S. Forest Service
    Area covered
    Description

    This is a interactive Web Map designed for use with EMC contributions story map applications. Displayed in this map are icons for each administratively combined National Forest (represented by the "trees" icon) and for each Forest Service (FS) Region (represented by the "star" icon). Clicking on each icon provides the user with a basic Job and Income values, as well as links to full At A Glance contribution reports, and a link to the Forest's homepage. Also displayed in this Web Map are the FS Regional Boundaries, FS Administrative Forest Boundaries, and FS recreation opportunities.

  20. ACS Race and Hispanic Origin Variables - Centroids

    • share-open-data-njtpa.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +6more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Race and Hispanic Origin Variables - Centroids [Dataset]. https://share-open-data-njtpa.hub.arcgis.com/maps/e6d218a8ba764a939c2add5c081beef9
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area, and the total population in that area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Federal Emergency Management Agency (Point of Contact) (2023). DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLACKAMAS COUNTY, OREGON (AND INCORPORATED AREAS) [Dataset]. https://catalog.data.gov/dataset/digital-flood-insurance-rate-map-database-clackamas-county-oregon-and-incorporated-areas
Organization logo

DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLACKAMAS COUNTY, OREGON (AND INCORPORATED AREAS)

Explore at:
Dataset updated
Nov 8, 2023
Dataset provided by
Federal Emergency Management Agencyhttp://www.fema.gov/
Area covered
Clackamas County, Oregon
Description

The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.

Search
Clear search
Close search
Google apps
Main menu